FlexTool(ENM):
Evolutionary Neuro Modeling Tool |
詳細功能: |
-
類神經
+ 基因演算法對重覆的資料學習有不錯的展現。
-
ENM
是把結合類神經網路和遺傳發展演算。從數學科學到醫學的最佳化工具。FlexTool
( ENM )
是為把遺傳發展演算法應用於多樣化領域的一個環境的套裝軟體。
-
FlexTool ( ENM )
是在 MATLAB
的環境下操作的軟體。MATLAB
為我們提供一個交互式計算環境。MATLAB
為我們提供一個交互式計算環境。
在 MATLAB
中可以處理較高層次的數學,例如:處理矩陣代數、傅利級數和其它複雜的函數。
-
FlexTool ( ENM )
可以存成 m-files
的型式。FlexTool
以模件化,
較有彈性,更容易使用,
開放的環境,
和可靠性為設計重點。FlexTool
( ENM )是以綜合 MATLAB模組的設計。
|
特性: |
- BUILDING BLOCKS: Upgrade from
NN or GA to ENM, upgrade from ENM to CI
- Robust Neural Networks: Using proprietory
Algorithms
- Off-line learning: Sequencer, Complete System,
Partial System, Use NN and EA techniques
- Niching module: to identify multiple solutions
- Clustering module: Use separately or with
Niching module
- Optimization: Single and Multiple Objectives
- High speed evolution : Proprietary Flex-GA
algorithm
- Three Tools in One : Modular, User Friendly,
and System Transparent ENM, GA, NN
- GUI : Easy to use, user friendly
- Help : Online
- Tutorial : Hands-on tutorial, application
guidelines
- Parameter Settings : Default parameter
settings for the novice
- General : Statistics, figures, and data
collection
- Cold Start : (start using previously selected
parameters)
- Warm Start : (start from previous generation)
- learning phase
- Off line learning of : neuron associations
and weights using genetic algorithms
- On line application of : the evolved or
known Neural Network
- GA options : generational, steady state,
micro, Flex-GA
- Coding schemes : include binary, logarithmic
(real)
- Selection : tournament, roulette wheel,
ranking
- Crossover : include 1, 2, multiple point
crossover
- Neural Network Type Options :
- BP Network--Fully Connected
- BP Recurrent Network
- BP Network--Hidden Layers
- RBF Network
- Activation Function Choices :
- Linear
- Hard Limiter
- Piece-wise Linear
- Sigmoidal
- Bipolar Sigmoidal
- Multimodal Sigmoidal
- Gaussian
- Error Computation Options :
- Least Square Error
- Hampel Error
- Huber Error
- Logistic Error
- Talvars Error
- Linear Error
- Special options include Robust Neural
Networks, pattern and batch learning,and
validation training.
|
|

|
|
|