

© 1999 Philips Semiconductors

7/23/99

1

ABOVE THIS LINE FOR ICG USE ONLY. DATA IS USED IN GENERATING BOOKMARKS AND CROSS-REFERENCES. (PRINTER: PLEASE MASK OFF AT RIP)

1

Part Num/Name:

Footer Var:

D
TER

E
GU

Chapter Bookmark:

Comments:

MPEG Audio Decoder (AdecMpeg) API 1

Topic Page

Overview 1-2

Using the MPEG Audio Decoder API 1-6

API Data Structure Descriptions 1-9

API Function Descriptions 1-16

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

2

©1998 Philips Semiconductors

7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

Overview

Introduction

The MPEG audio decoder is a TSSA compliant module that accepts a stream of MPEG 1
layer 1 and layer 2 encoded audio at its input stream and generates a linear PCM format
output stream. It is also able to handle the respective MPEG-2 bit streams. However, it
decodes only the stereo channels of MPEG-2 streams. For information about the general
interface philosophy, you are directed to the TSSA software architecture documentation.

The public programmers interface of the decoder is the file tmolAdecMpeg.h. This
TriMedia library does not support a non-streaming interface. Therefore, no AL header file
is made public.

Use of either of these decoders may require a patent license, as the MPEG audio coding
standards are covered by patents held by various companies.

MPEG Compliancy

The decoder is capable of decoding all Layer 1and Layer 2 bit streams except for bit
streams using the free data rate format. Such bit streams cause an error message. The
decoder is also not performing de-emphasis. It, however, indicates if emphasis is applied to
MPEG bit stream via the progress callback function when the appropriate flag is installed.

Inputs and Outputs

The decoder has one input and two outputs. The input is an MPEG 1 encoded bit stream.
The first output is stereo 16 bit linear PCM audio data, as described by a TSA packet.
Stereo 16 bit is the only supported output format. The sample rate can be 32k, 44.1k, or
48k, as described by the MPEG specification. The second will support IEC601937
formatted data, or a headphone mix, in the future.

©1998 Philips Semiconductors

7/23/99

3

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

Real Time Behavior

This section describes some issues of using the decoder in a real time application as
buffering, time stamping, and synchronization.

Input/Output Buffering

The MPEG-1 audio decoder accepts TSSA data packets of the type atfMpeg and sends out
packets of the type atfLinearPCM and the subtype apfStereo16. On its input side the
decoder implements a flexible buffer management. It accepts packets of any size. On the
output side, however, it accepts only packets that can accommodate at least one frame of
decoded audio which is 284 samples for Layer 1 and 1152 samples for Layer 2. The
decoder sends the output packet when it is filled with one decoded audio frame. It does not
try to fill the rest of the packet with data from successive frames.

Time Stamps

The MPEG audio decoder is capable of attaching time stamps to the PCM data packets
which are copied from the incoming MPEG packets. It is ensured that the time stamps are
assigned to the correct PCM packets.

Synchronization

After the start function of the decoder has been called the decoder can either be in sync or
out of sync. It reports a change of this state through the progress function if the progress
flag ADEC_MPEG1_PROG_REPORT_FIND_SYNC is installed. Whenever the decoder is
not in sync it is not producing audio output. It loses the synchronization, when settings in
the MPEG headers change, the header is invalid, the distance to the next frame is incorrect,
or the optional CRC is incorrect. In the latter three cases an error is reported via the error
callback function. In all cases the progress function is called if the above mentioned
progress flag is installed.

The decoder does not perform any muting or block repeating when it loses sync. It is up to
downstream components to implement features like that.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

4

©1998 Philips Semiconductors

7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

Errors

The errors reported by the MPEG decoder are all defined in tmolAdecMpeg.h. The base
value of these errors is 0x140A0000, as defined in tmLibappErr.h.

The user can install a TSA standard error callback function, and the decoder will call this if
it encounters errors while decoding the bit stream. In that case, the errorCode will be one
of the values defined in tmolAdecMpeg.h. Errors reported by the error function are not
fatal, and processing will continue as the decoder attempts to recover from the error.

Apart from the standard TSSA errors that are defined in tmLibappErr.h the following
component specific errors can occur during the execution of the start function:

ADEC_MPEG1_ERR_INVALID_HEADER

The ID bit in the MPEG header equals zero.

ADEC_MPEG1_ERR_FREE_FORMAT_NOT_SUPPORTED

MPEG bit stream does not have a specified data rate.
This mode is not supported.

ADEC_MPEG1_ERR_LAYER3_NOT_SUPPORTED

Decoder can only handle Layer 1 and 2 bit streams.

ADEC_MPEG1_ERR_CRC_FAILED

The calculation of the cyclic redundancy check
failed. This is an indication for a corrupted bit stream
and/or transmission errors.

ADEC_MPEG1_ILLEGAL_FRAME_LENGTH

The decoder read more bits than permitted by the
standard to decode the last frame. This is an
indication that either the encoder did not work
properly or that transmission errors occurred.

©1998 Philips Semiconductors

7/23/99

5

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

Progress

The user can install a TSA standard progress callback function. The decoder will use this
in several cases.

1. To report a change in format, per standard TSSA behavior. The defaults handle this.

2. To report a change in format to the user. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_FORMAT

, and the progress argument description field is a
pointer to a data structure of the type

tmAdecMpegFormat_t

.

3. To report the state of the decoder while decoding. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_FIND_SYNC

. The decoder reports its state in the
description field of the progress arguments struct. It contains a pointer to an integer. The
integer value is either

DECODER_NOT_IN_SYNC

 or

DECODER_IN_SYNC

. Note that the
progress function only reports transitions between these two states.

4. To report that a frame is decoded successfully. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_EVERY_FRAME

. This can be used to count frames or to do
some performance measurements.

Configuration

Although the decoder does export the standard configuration function, no configuration
changes are supported.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

6

©1998 Philips Semiconductors

7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

Using the MPEG Audio Decoder API

The TriMedia MPEG Audio decoder API is contained within the archived application
library libtmAdecMpeg.a. For OL layer applications, you must include the
tmolAdecMpeg.h header file. AL layer operation is not supported.

The OL Layer

The operating system layer only supports data streaming operation. A diagram of the
typical flow of control is shown in Figure 1-1.

The capabilities of the component should be obtained using

tmolAdecMpegGetCapabilities

. This information will be used by the format manager
to ensure that the two instances being connected together are compatible. An instance of
the audio decoder should be obtained using

tmolAdecMpegOpen

. InOutDescriptors which
connect the audio decoder to other components should be created by initializing

ptsaInOutDescriptorSetup_t

 structures and calling

tsaDefaultInOutDescriptorCreate

 for each connection. This function can also be
used to automatically create packets which will be used to transfer data between
component instances.

The pointer to the audio decoder instance setup should be obtained using

tmolAdecMpegGetInstanceSetup

. This structure should be initialized with any
application specific values. The application should then call

tmolAdecMpegInstanceSetup

 to configure the instance.

Data streaming can then be initiated by calling

tmolAdecMpegStart

. Coded audio
packets to be decoded are obtained using the datain call back function which is provided in
the tsaDefaults library. An output packet will be obtained using the dataout call back
function and this will be used to store the decoded audio data.

The application can terminate data streaming using

tmolAdecMpegStop

, and release the
instance using

tmolAdecMpegClose

. After the instance has been closed, the application
should destroy the InOutDescriptor using the

tsaDefaultInOutDescriptorDestroy

function. This will automatically free the packets contained in the queues.

©1998 Philips Semiconductors

7/23/99

7

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

Figure 1-1

OL Layer data Streaming Flow Control

tmolAdecMpegGetCapabilities

tmolAdecMpegOpen

tmolAdecMpegGetInstanceSetup

tmolAdecMpegInstanceSetup

tmolAdecMpegStart
datain callback
dataout callback

tmolAdecMpegStart

application can perform other tasks

datain callback
dataout callback
progress callback

datain callback
dataout callback

tmolAdecMpegStop

tmolAdecMpegClose

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

8

©1998 Philips Semiconductors

7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

Callback Function Requirements

The following table indicates the mandatory and optional callback functions used by the
MPEG audio decoder.

Table 1-1

Callback Function Requirements

Callback Function Use

datainFunc (mandatory) Used for data streaming to obtain full packets containing
coded audio data. The tsaDefaults library provides a
default function automatically.

dataoutFunc (mandatory) Used for data streaming to obtain empty packets where
decoded audio data will be stored. The tsaDefaults library
provides a default function automatically.

controlFunc (mandatory) Used to pass configuration command to the decoder. The
tsaDefaults library provides a default function automatically.

progressFunc (mandatory) Used by the decoder to report the decoders progress to
the application. The tsaDefaults library provides a default
function automatically.

©1998 Philips Semiconductors

7/23/99

9

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

API Data Structure Descriptions

This section describes the TriMedia MPEG-1 Layer II and Layer III audio decoder data
structures.

Name Page

tmolAdecMpegCapabilities_t 1-10

tmAdecMpegProgressFlags_t 1-10

tmAdecMpegMode_t 1-10

tmAdecMpegLayer_t 1-11

tmAdecMpegCopyright_t 1-11

tmAdecMpegProtection_t 1-12

tmAdecMpegPrivate_t 1-12

tmAdecMpegOriginal_t 1-11

tmAdecMpegEmphasis_t 1-12

tmAdecMpegSecOutputMode_t 1-13

tmolAdecMpegInstanceSetup_t 1-14

tmAdecMpegFormat_t 1-15

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

10

©1998 Philips Semiconductors

7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-

references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.
—Headings styles H1 through H4 are hierarchical and must

not

 occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmolAdecMpegCapabilities_t

typedef struct tmolAdecMpegCapabilities_t {

 ptsaDefaultCapabilities_t defaultCapabilities;

} tmolAdecMpegCapabilities_t, *ptmolAdecMpegCapabilities_t;

Description

Standard TSSA capabilities structure. Used by applications to find out about the inputs and
outputs of the component.

tmAdecMpegProgressFlags_t
typedef enum {

 ADEC_MPEG1_PROG_REPORT_FORMAT = 0x01,

 ADEC_MPEG1_PROG_REPORT_FIND_SYNC = 0x02,

 ADEC_MPEG1_PROG_REPORT_EVERY_FRAME = 0x04

} tmAdecMpegProgressFlags_t;

Description

Controls the operation of the progress callback function. An application programmer can
request notification in any of these cases. These flags are used to configure the progress
function behavior during instance setup. In addition to that they are also used during the
data streaming. Whenever the library calls the progress function, it indicates via the in
progressCode field of the progress arguments which progress flag caused the function call.

tmAdecMpegMode_t
typedef enum {

 ADEC_MPEG1_STEREO = 0x00000001,

 ADEC_MPEG1_JOINT_STEREO = 0x00000002,

 ADEC_MPEG1_DUAL_CHANNEL = 0x00000004,

 ADEC_MPEG1_SINGLE_CHANNEL = 0x00000008

} tmAdecMpegMode_t;

Description

Describes the mode of the encoded audio. This type is used in the struct
tmAdecMpegFormat_t .

©1998 Philips Semiconductors 7/23/99 11

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmAdecMpegLayer_t
typedef enum {

 ADEC_MPEG1_LAYER1 = 0x01,

 ADEC_MPEG1_LAYER2 = 0x02,

 ADEC_MPEG1_LAYER3 = 0x03

} tmAdecMpegLayer_t;

Description

Describes the encoding mode of the current stream. Reported in the tmAdecMpegFormat_t
structure, as found in the bit stream.

tmAdecMpegCopyright_t
typedef enum {

 ADEC_MPEG1_COPYRIGHT_ON = 0x01,

 ADEC_MPEG1_COPYRIGHT_OFF = 0x02

} tmAdecMpegCopyright_t;

Description

Describes the copyright state of the current stream. Reported in the tmAdecMpegFormat_t
structure, as found in the bit stream.

tmAdecMpegOriginal_t
typedef enum {

 ADEC_MPEG1_ORIGINAL = 0x01,

 ADEC_MPEG1_COPY = 0x02

} tmAdecMpegOriginal_t;

Description

Describes the state of the “original” bit in the current stream. Reported in the
tmAdecMpegFormat_t structure, as found in the bit stream.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

12 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmAdecMpegProtection_t
typedef enum {

 ADEC_MPEG1_CRC_ON = 0x01,

 ADEC_MPEG1_CRC_OFF = 0x00

} tmAdecMpegProtection_t;

Description

Tells whether or not CRC checksum are used to protect the transmitted bit stream.
Reported in the tmAdecMpegFormat_t structure, as found in the bit stream.

tmAdecMpegPrivate_t
typedef enum {

 ADEC_MPEG1_PRIVATE_ON = 0x01,

 ADEC_MPEG1_PRIVATE_OFF = 0x02

} tmAdecMpegPrivate_t;

Description

Describes the state of the “private” bit in the current stream. Reported in the
tmAdecMpegFormat_t structure, as found in the bit stream.

tmAdecMpegEmphasis_t
typedef enum {

 ADEC_MPEG1_NO_EMPHASIS = 0x01,

 ADEC_MPEG1_50_15_EMPHASIS = 0x02,

 ADEC_MPEG1_CCITT_EMPHASIS = 0x03,

} tmAdecMpegEmphasis_t;

Description

Tells a user whether or not emphasis has been applied to the current stream. Reported in
the tmAdecMpegFormat_t structure, as found in the bit stream.

©1998 Philips Semiconductors 7/23/99 13

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmAdecMpegSecOutputMode_t
typedef enum {

 ADEC_MPEG1_SEC_OUT_DISABLED = 0x01,

 ADEC_MPEG1_SEC_OUT_1937 = 0x02,

} tmAdecMpegSecOutputMode_t;

Description

Sets the mode of operation for the second audio output. Always
ADEC_MPEG1_SEC_OUT_DISABLED in this release.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

14 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmolAdecMpegInstanceSetup_t
typedef struct {

 ptsaDefaultInstanceSetup_t defaultSetup ;

 tmAdecMpegSecOutputMode_t secondOutputMode ;

} tmolAdecMpegInstanceSetup_t, *ptmolAdecMpegInstanceSetup_t;

Fields

defaultSetup Pointer to the default instance setup struct, refer to
tsa.h.

secondOutputMode To allow for 1937 output. Must be
ADEC_MPEG1_SEC_OUT_DISABLED in this release.

Description

Configure the component for operation. Standard TSSA callback functions can be
provided.

©1998 Philips Semiconductors 7/23/99 15

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmAdecMpegFormat_t
typedef struct AdecMpegFormat_t {

 tmAdecMpegLayer_t layer ;

 tmAdecMpegMode_t eMode;

 UInt32 bitRate ;

 tmAdecMpegCopyright_t copyright ;

 tmAdecMpegProtection_t protection ;

 tmAdecMpegPrivate_t private ;

 tmAdecMpegOriginal_t original ;

 tmAdecMpegEmphasis_t emphasis ;

 Float sampleRate ;

} tmAdecMpegFormat_t;

Fields

layer Encoding method, layer 1, 2, or 3.

emode Stereo mode.

bitRate Encoded bit rate.

copyright Recovered from bit stream.

protection Is CRC used? Recovered from bit stream.

private Recovered from bit stream.

original Recovered from bit stream.

emphasis Recovered from bit stream.

sampleRate Recovered from bit stream.

Description

A structure of this type is passed to progress function when the sync word is found in a bit
stream. An application can use this to determine the nature of the stream.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

16 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

API Function Descriptions

This section describes the TriMedia MPEG-1 Layer II audio decoder functions.

Name Page

tmolAdecMpegGetCapabilities 1-17

tmolAdecMpegOpen 1-18

tmolAdecMpegClose 1-19

tmolAdecMpegGetInstanceSetup 1-20

tmolAdecMpegInstanceSetup 1-21

tmolAdecMpegStart 1-24

tmolAdecMpegStop 1-25

tmolAdecMpegInstanceConfig 1-23

©1998 Philips Semiconductors 7/23/99 17

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmolAdecMpegGetCapabilities
extern tmLibappErr_t tmolAdecMpegGetCapabilities (

 ptmolAdecMpegCapabilities_t * pCap
);

Parameters

pCap Pointer to a capabilities structure pointer.

Return Codes

TMLIBAPP_OK Returned on successful completion.

Description

This function can be used to determine the capabilities of the audio decoder.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

18 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmolAdecMpegOpen
extern tmLibappErr_t tmolAdecMpegOpen (

 Int * instance
);

Parameters

instance Pointer to an integer instance variable which will be
used to identify the decoder in subsequent
transactions.

Return Codes

TMLIBAPP_OK Returned on successful completion.

TMLIBAPP_ERR_MEMALLOC_FAILED

Memory could not be allocated for the internal
variables.

Description

Instantiates a MPEG audio decoder, and sets the instance variable to point to the audio
decoder instance. Allocates memory for the instance variable

©1998 Philips Semiconductors 7/23/99 19

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmolAdecMpegClose
extern tmLibappErr_t tmolAdecMpegClose (

 Int instance
);

Parameters

instance Instance value, as returned by tmxlAdecMpegOpen

Return Codes

TMLIBAPP_OK Returned on successful completion

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open.

Description

This function will shut down an instance of the decoder. The instance must have been
stopped prior to calling the function.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

20 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmolAdecMpegGetInstanceSetup
extern tmLibappErr_t tmolAdecMpegGetInstanceSetup(

 Int instance ,

 ptmolAdecMpegInstanceSetup_t * setup
);

Parameters

instance Instance value, as returned by tmolAdecMpegOpen.

setup Pointer to a setup structure pointer.

Return Codes

TMLIBAPP_OK Returned on successful completion

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open.

Description

The tmolAdecMpegGetInstanceSetup function is used to return a pointer to the
decoders default OL Layer instance setup structure. The decoder creates this structure
when the component is opened. After obtaining the pointer to the structure, the application
can initialize specific instance values before calling tmolAdecMpegInstanceSetup .

©1998 Philips Semiconductors 7/23/99 21

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmolAdecMpegInstanceSetup
extern tmLibappErr_t tmolAdecMpegInstanceSetup (

 Int instance ,

 ptmolAdecMpegInstanceSetup_t setup
);

Parameters

instance Instance value, as returned by tmalAdecMpegOpen.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Returned on successful completion.

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open.

TMLIBAPP_ERR_NULL_PROGRESSFUNC

Returned if the progress function callback pointer is
Null.

TMLIBAPP_ERR_NULL_DATAINFUNC

Returned if the datain function callback pointer is
Null.

TMLIBAPP_ERR_NULL_DATAOUTFUNC

Returned if the dataout function callback pointer is
Null.

TMLIBAPP_ERR_NULL_CONTROLFUNC

Returned if the control function callback pointer is
Null.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS

Returned if the input/output dataClass is not
avdcAudio .

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE

Returned if the input dataType is not atfMPEG or the
output dataType is not atfLinearPCM .

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE

Returned if the input dataSubtype is not either
amfMPEG_Layer1 , amfMPEG_Layer2 or
amfMPEG_Layer3 , or the output data subtype is not
apfStereo16 .

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

22 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

TMLIBAPP_ERR_NULL_IODESC Can assert if the input descriptor is Null.

TMLIBAPP_ERR_NO_QUEUE Returned if the output descriptor has no full.

Description

This function configures the decoder.

©1998 Philips Semiconductors 7/23/99 23

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmolAdecMpegInstanceConfig
extern tmLibappErr_t tmolAdecMpegInstanceConfig (

 Int instance ,

 UInt32 flags ,

 ptsaControlArgs_t args
);

Parameters

instance Instance value, as returned by tmolAdecMpegOpen

flags Not used.

args Pointer to the configuration arguments.

Return Codes

TMLIBAPP_OK Returned on successful completion.

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open.

TMLIBAPP_ERR_INVALID_COMMAND

Returned if the configuration command is not
recognized.

Description

This function can be used to change instance parameters after the component has been
initialized and during data streaming operation. Right now no commands are implemented.
This might change in the future.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

24 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

tmolAdecMpegStart
extern tmLibappErr_t tmolAdecMpegStart (

 Int instance
);

Parameters

instance Instance value, as returned by tmalAdecMpegOpen.

Return Codes

TMLIBAPP_OK Returned on successful completion.

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open or setup.

Description

This function begins data streaming for the decoder. At the AL layer, it invokes a function
that is an infinite while loop. At the OL layer, this while loop is spawned as a task.

©1998 Philips Semiconductors 7/23/99 25

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

1

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

D
TER

E
GU

tmolAdecMpegStop
extern tmLibappErr_t tmolAdecMpegStop (

 Int instance
);

Parameters

instance Instance value, as returned by tmxlAdecMpegOpen.

Return Codes

TMLIBAPP_OK Returned on successful completion.

TMLIBAPP_ERR_INVALID_INSTANCE

Returned if the desired instance is not open or setup.

Description

This function stops the audio decoder from streaming data.

Chapter 1: MPEG Audio Decoder (AdecMpeg) API

26 ©1998 Philips Semiconductors 7/23/99

D
TER

E
GU

—Use dynamic cross-references only (see “Cross-Reference” in the Special menu). Please do not keystroke cross-
references to figures, tables, headings, pages, files, etc., including those within the mini-TOCs.

—Headings styles H1 through H4 are hierarchical and must not occur out of nested order. (e.g. H3 should not follow H1).
All headings and figure titles should be initial caps (e.g. “Understanding the Run-Time Engine”).

—Please do not create new character or paragraph styles, variables, or cross-reference formats.

	MPEG Audio Decoder (AdecMpeg) API
	Overview
	Introduction
	MPEG Compliancy
	Inputs and Outputs
	Real Time Behavior
	Input/Output Buffering
	Time Stamps
	Synchronization

	Errors
	Progress
	Configuration

	Using the MPEG Audio Decoder API
	The OL Layer
	Callback Function Requirements

	API Data Structure Descriptions
	tmolAdecMpegCapabilities_t
	tmAdecMpegProgressFlags_t
	tmAdecMpegMode_t
	tmAdecMpegLayer_t
	tmAdecMpegCopyright_t
	tmAdecMpegOriginal_t
	tmAdecMpegProtection_t
	tmAdecMpegPrivate_t
	tmAdecMpegEmphasis_t
	tmAdecMpegSecOutputMode_t
	tmolAdecMpegInstanceSetup_t
	tmAdecMpegFormat_t

	API Function Descriptions
	tmolAdecMpegGetCapabilities
	tmolAdecMpegOpen
	tmolAdecMpegClose
	Parameters

	tmolAdecMpegGetInstanceSetup
	Parameters

	tmolAdecMpegInstanceSetup
	Parameters

	tmolAdecMpegInstanceConfig
	tmolAdecMpegStart
	tmolAdecMpegStop

