

Technosoft S.A. Rue des Courtils 8A, CH-2035 Corcelles, Switzerland
 Phone: +41 32 732 5500 Fax: +41 32 732 5504 e-mail : contact@technosoft.ch WEB :www.technosoft.ch

Technosoft is a Third Party of Texas Instruments supporting the TMS320C24xx and TMS320F281x DSP
controllers from the C2000 family.

To get your project started rapidly, Technosoft offers the DMCD Pro-S (BL) plug-in for DMCD-Pro, a
complete source code library for digital motion control and demo application code for speed control of
Brushless Motors. Please find the description of these examples on the following pages.

DMCD-Pro (Digital Motion Control Developer Pro)

Digital Motion Control Developer for integrated DSP software development for the TMS320F24xx
and TMS320F28xx
n Incorporated Debugger Watch Windows
n Memory and I/O registers view/modify
n Integrated source code editor with powerful programming options
n Project Management System
n Tracing Module
n Plug Ins
n Reference Generator Module
n Application Sources (Optional)

Fully integrated DSP software development environment
n Windows environment with DSP-specific functions gets you started quickly

Incorporated Debugger
n Observe/edit global variables during the debugging process
n Breakpoints, single stepping, stopping and continuing the current program
n You can view/edit both data and program memory contents of the DSP target board
n Disassembly window with disassembled instructions with symbolic information for effective debugging
n View/edit I/O and internal registers of the DSP processor

Integrated source code editor with powerful programming options
n Each fi le has its own window and you can edit many views of the same file
n Advance search and replace mechanism
n Syntax coloring for C and ASM (TI’s assembly syntax is also supported)
n Bookmarks management

Project Management System
n The system provides an effective way of quickly visualizing, accessing, and manipulating all the project

files and their dependencies
n The result is a concise, highly organized project management system that promotes a very efficient

development process

Tracing module
n The system provides an advanced graphical tool for the analysis and evaluation of motion control

applications
n The program variables may be stored during the real-time execution of the motion, and then up-loaded

and visualized in the graphical environment

Plug-ins
n This module allows to users using external module functions into their DSP applications. Basically, you

may select one or more external modules from a list containing all available external modules
n If the reference generator plug-in is included in your application, you may define the motion reference at

a high level, in DMC Developer, download it and execute it automatically on the DSP board

Technosoft S.A. Rue des Courtils 8A, CH-2035 Corcelles, Switzerland
 Phone: +41 32 732 5500 Fax: +41 32 732 5504 e-mail : contact@technosoft.ch WEB :www.technosoft.ch

DMCode S(BL) - Permanent Magnet Synchronous Motor motion application

The permanent magnet synchronous motor (PMSM) motion application implements a vector control
method to drive in sinusoidal mode the three-phase brushless motor included in the MCK24xx or
MCK28xx kits.

The demo is supplied as a TMS320F24xx or TMS320F28xx application, structured as a project of the
DMCD-Pro platform. The complete source files of the application are included in the project structure.

The application is a speed control application of the brushless motor operating in sinusoidal mode.

Basic structure of the control scheme for the PMSM application

The PMSM application control scheme is presented in the figure below. As one can see, the scheme is
based on the measure of two phase's currents and of the motor position. The speed estimator block is a
simple encoder position difference block over one sampling period of the speed control loop. The measured
phase currents, ia and ib, are transformed into the stator reference frame components, ids and iqs. Then,
based on the position information, these components are transformed into the rotor frame direct and
quadrature components, ide and iqe. The speed and current controllers are PI discrete controllers. The
inverse coordinates transformation is used for computation of the phase voltages references, v*as, v*bs and
v*cs, applied to the inverter, starting from the values of voltage references computed in the d and q
reference frame (v*de, v*qe). Thus, the 6 full compare PWM outputs of the DSP controller are directly driven
by the program, based on these reference voltages.

The direct current component reference i*de is set to 0, case corresponding to the motion of the motor in
the normal speed range, without considering a possible field weakening operation.

Based on this application, representing a complete, ready-to-run motion example, the user gets all the
information needed to understand its basic DSP implementation aspects, as well as a convenient starting
point for the development of his own applications.

The code is developed both in C language – the C28x library, and in C language (the main structure of the
application) and assembler (the time-critical parts, as controllers, coordinates transformations, etc.) – the
C24xx library.

Using the advanced features of DMCD-Pro, the motion reference can be defined at high-level, from the
Windows environment. Calling the data logger function allows the user to visualize any of the global
variables of the program, and effectively analyze and debug his application.

vas*

PWM
Inverter

MS
3~

θm

ia

ib

Σ+
Im

*

-

Crt
Ctrl

v*qeSpd.
Ctrl.Σ

+

-

ωr

Speed
Estimatior

TP

PMSM control scheme

ωr
*

iqe

vbs*

vcs*Crt
CtrlΣ

+
-

ide

ids

iqs

v*deI*de=0

ds, qs

a, b, cds, qs

de, qe

Vds

Vqs

ds, qs

a, b, cds, qs

de, qe

Technosoft S.A. Rue des Courtils 8A, CH-2035 Corcelles, Switzerland
 Phone: +41 32 732 5500 Fax: +41 32 732 5504 e-mail : contact@technosoft.ch WEB :www.technosoft.ch

DMCode S(BL) - Brushless DC motion demo application

The brushless DC motor (BLDC) motion application implements a block commutation control method to
drive the three-phase brushless motor included in the MCK24xx kit or MCK28xx kits.

The demo is supplied as a TMS320F24xx or TMS320F28xx application, structured as a project of the
DMCD-Pro platform. The complete source files of the application are included in the project structure.

The application is a speed control application of the brushless motor operating in trapezoidal mode.

Basic structure of the control scheme for the BLDC application

The BLDC application control scheme is presented in the figure below. As one can see, the scheme is
based on the measure of two phase's currents and of the motor position. The speed estimator block is a
simple encoder position difference block over one sampling period of the speed control loop. The measured
phase currents, ia and ib, are used to compute the equivalent DC current in the motor, based on the Hall
sensors position information. Remark that the Hall sensors give a 60 electrical degrees position
information. The speed and current controllers are PI discrete controllers. Only one current controller is
needed in this case, similar to a DC motor case. The voltage commutation block implements (by software)
the computation of the phase voltages references, v*as, v*bs and v*cs, applied to the inverter. Practically,
the 6 full compare PWM outputs of the DSP controller are directly driven by the program, based on these
reference voltages. In the BLDC case, only four of the inverter transistors are controlled for a given position
of the motor. The scheme will commute to a specific command configuration, for each of the 60 degrees
position sectors, based on the information read from the Hall sensors.

Based on this application, representing a complete, ready-to-run motion example, the user gets all the
information needed to understand its basic DSP implementation aspects, as well as a convenient starting
point for the development of his own applications.

The code is developed both in C language – the C28x library, and in C language (the main structure of the
application) and assembler (the time-critical parts, as controllers, coordinates transformations, etc.) – the
C24xx library.

Using the advanced features of DMCD-Pro, the motion reference can be defined at high-level, from the
Windows environment. Calling the data logger function allows the user to visualize any of the global
variables of the program, and effectively analyze and debug his application.

Current
Commutation

Voltage
commut.

vas*
as

PWM
Inverter MS

3~

θm[60]

ia

ib

Σ+
Im*

-

Crt
Ctrl

v*
Spd.
Ctrl.

Σ
+

-

ω r

Speed
Estimator

Speed
Estimation

HALL

Enc

BLDC control scheme

ωr
*

im

vbs*

vcs*

Technosoft S.A. Rue des Courtils 8A, CH-2035 Corcelles, Switzerland
 Phone: +41 32 732 5500 Fax: +41 32 732 5504 e-mail : contact@technosoft.ch WEB :www.technosoft.ch

Crt.No.

Function description

Function name

1 Application program which performs initialization, activates interrupts and
waits in an infinite loop

main()

2 Speed loop control RTI routine for speed control implementation rtc_ps_int() / rtc_slow_int()
3 Current loop control RTI routine for current control implementation rtc_crt_int() / rtc_fast_int()
4 Initialization routine for the I/O registers shared by several initialization

functions
init_IO_registers()

5 Initialization routine for the parameters of the d axis current controller. init_reg_id()
6 Initialization routine for the parameters of the q axis current controller. init_reg_iq()
7 Initialization routine for the parameters of the speed controller. init_reg_omg()
8 Initialization routine for the parameters of the encoder interface. init_encoder()
9 Initialization routine for setup the I/O pins of port A (pins1,2,3) as inputs, for

reading the HALL sensors connected to them
init_hall()

10 Initialization routine for the parameters of the PWM module init_pwm()
11 Initialization routine for the parameters of ADC currents measurement init_adc()
12 Initialization routine for setting of slow sampling interrupt parameters init_ctr_ps()
13 Initialization routine for setting of fast sampling interrupt parameters init_ctr_crt()
14 Initialization routine for the interrupts Kernel initializeKernel()
15 Function for offset detection of the two current measurement channels get_ia_ib_offsets()
16 Initialization routine for the data logger parameters init_logger()
17 Logger routine which performs data logging logger()
18 Initialization routine for the reference generator parameters init_reference()
19 Reference generator routine reference()
20 Initialization routine for the current d-axis PI controller variables init_pi_reg_id()
21 Function for d-axis current PI controller implementation pi_reg_id()
22 Initialization routine for the current q-axis PI controller variables init_pi_reg_iq()
23 Function for q-axis current PI controller implementation pi_reg_iq()
24 Initialization routine for the speed PI controller variables init_pi_reg_omg()
25 Function for speed PI controller implementation pi_reg_omg()
26 Function for enable the QEP circuit for the encoder reading start_encoder()
27 Function which reads and stores the encoder position (QEP capture

pulses)
read_encoder()

28 Electrical angle computing routine enc2theta()
29 Transformation routine of coordinates from dq to abc frame. Returns the

reference voltages in the natural frame of the motor (u_a_ref, u_b_ref,
u_c_ref)

tdqabc()

30 Transformation routine of coordinates from abc to dq frame. Returns the
transformed currents i_d, i_q and also computes the sine and cosine of
theta

tabcdq()

31 Routine which updates the PWM signals (AC mode) by updating of the
compare registers of the full compare unit

update_ac_pwm()

32 Routine which updates the PWM signals (DC mode) by updating of the
compare registers of the full compare unit

update_dc_pwm()

33 Function which enables the PWM signals generation start_pwm()
34 Interrupt routine executed at EOC of ADC. Reads the conversion results read_int_adc()
35 Function which reads the ADC conversion results in pooling mode get_adc_pair1()
36 Function which enables GPT2 compare interrupt for current loop control start_ctr_crt()
37 Function which enables GPT2 period interrupt for speed loop control start_ctr_ps()
38 Current control interrupt routine executed at GPT2 timer compare event rtc_crt()
39 Speed control interrupt routine executed at GPT2 time period event rtc_ps()
40 Real-time control interrupt routine executed at PWM timer underflow event ISR_Kernel()
41 Function for saturation level computing loadsatvals()
42 Function which saturates the PWM reference voltages sat_pwm_voltages()
43 Function which saturates DC reference voltage (q-axis reference voltage) sat_dc_voltage()

Technosoft S.A. Rue des Courtils 8A, CH-2035 Corcelles, Switzerland
 Phone: +41 32 732 5500 Fax: +41 32 732 5504 e-mail : contact@technosoft.ch WEB :www.technosoft.ch

44 Function which computes the sinus of the position angle sine()
45 Function for reading the Hall sensors of the Pittman motor read_hall_Pittman()
46 Function for reading the Hall sensors of the Escap motor read_hall_Escap()
47 Initialization routine for SCSR register to ADC & EVM clock enable Initialize_SCSR()

