
Building DSP Applications via Graphical Design –
“Does a picture ‘cost’ a thousand words?”

Using component-based DSP programming to simplify development

Discover how graphical component-based DSP programming can minimize
development cycles, reduce risk, and simplify complex DSP projects.

 Copyright Hyperception, Inc., 2001
All rights reserved worldwide

Table of Contents

Section 1. Overview of Graphical Design for DSP ... 7
1.1. What is ‘Graphical DSP’ or ‘Block Diagram’ Programming?... 7
1.2. Component Oriented Nature of Design – “Black Box” Design .. 8
1.3. Graphical Compiler Analogy.. 8
1.4. The Integrated Circuit – Possible Case Study? .. 8

Section 2. Several Methods of Graphical DSP Programming.................................... 9
2.1. Simulation/Modeling on PC... 9
2.2. Limited Real-time Development on PC... 10
2.3. C Source Code Generation ... 11
2.4. Direct DSP Chip Support - Object Code Generation ... 12

2.4.1. Does not require C or Assembly Language Programming... 12
2.4.2. Fine Grained - Compiler Analogy ... 12
2.4.3. Large Grained – Component Delivery/Usage Vehicle.. 13
2.4.4. Building DSP Applications (Generating DSP Object Code Files) 13

2.5. Direct DSP Board Support - Live Real-time Interactive Development with Actual DSP
Hardware .. 14

Section 3. Important Considerations for a Graphical DSP Design & Development
Tool... ... 15

3.1. Open Software Architecture .. 15
3.1.1. Creating New Components .. 15

3.2. Efficiency ... 16
3.3. True Hierarchical Design... 16
3.4. Recursive Support... 16
3.5. Interoperability with Existing Development Tools ... 16

3.5.1. DSP Development Software... 16
3.5.2. DSP Development Standards... 16
3.5.3. DSP Development Hardware ... 17

DSP-Centric Focus... 17
3.5.4. Fixed-Point / Floating-Point .. 17
3.5.5. Single Sample Processing / Block-Oriented Processing.. 17
3.5.6. Direct Support for Real-world Interface (A/D, D/A)... 18

Section 4. Targeting DSP Hardware – Graphical Tool for “Rapid Production”...... 20
4.1. Ability to target Embedded DSP Applications ... 20
4.2. Ability to target plug-in Industry Standard DSP Development Boards................................ 20

Section 5. Applications of Graphical DSP Design.. 21
5.1. Communications.. 21
5.2. Control ... 22
5.3. Pro Audio... 22
5.4. Telecom... 23
5.5. Research ... 24
5.6. Teaching/Education... 25
5.7. Virtually Anything else… ... 25

Section 6. Benefit vs. Cost Tradeoff.. 26
6.1. Application Development Concerns .. 26

6.1.1. Time-to-market ... 26
6.1.2. Learning Curve Requirements.. 26
6.1.3. Maintainability ... 26
6.1.4. Interoperability with Existing Development Tools... 26
6.1.5. Cost... 27

6.2. Application Design Concerns .. 27

6.2.1. Application Speed... 27
6.2.2. Application Size .. 27
6.2.3. Embedded Development Issues... 27
6.2.4. Device Independence... 28

Section 7. Hyperception’s Product Offerings in Graphical Design Tools 29
7.1. Hypersignal® Block Diagram ... 29
7.2. RIDE.. 29
7.3. VAB (Visual Application Builder) ... 29
7.4. ImageDSP Image Processing Software.. 29

Section 8. Summary ... 30
8.1. Future DSP Development ... 30
8.2. Contact Information ... 30

List of Figures

Using component-based DSP programming to simplify development .. 1
PC-based Simulation from graphical block diagram.. 9
PC-based limited real-time development from graphical block diagram 10
Simulation with subsequent C source code generation from graphical block diagram 11
Direct DSP Object Code Generation from graphical block diagram.. 12
Live real-time interactive development on DSP hardware from graphical block diagram 14
Frame-based Architecture for Real-time DSP – Telecom and other Applications 18
Interrupt-based Architecture for Real-time DSP – Control Applications .. 18
Simple PSK modem application graphically designed with RIDE/VAB for C5000 21
Design example for a real-time ACI motor control system using a C2000 DSP and RIDE/VAB .. 22
Example with RIDE allowing for fine-pitched voice analysis in music ... 23
Simple G.723 Encode/Decode application graphically designed with RIDE/VAB for C6000....... 24

Section 1. Overview of Graphical Design for DSP
Just draw a block diagram of your design, produce real-time working code for a DSP – sounds
good, but how well does it work? What about the typical engineering tradeoff – better level of
abstraction for my design, but at what cost? And for DSP applications, if you’re not running real-
time at the end of the day, what good was it – just an exercise in novel approaches that look
good, but don’t produce?

Hyperception has been studying this problem for well over a decade (quite a long time in DSP
years) and has produced a unique approach to graphical design for DSP – our Real-time
Integrated Development Environment or RIDE®, and the subset product Visual Application Builder
or VAB. In particular, RIDE/VAB can directly produce DSP object code from a graphically
constructed, user-created algorithm to achieve an overall software design that works on a
programmable DSP. Many application areas exist and include, but certainly are not limited to,
those found in telecom, image processing, speech processing, audio processing, control [such as
motor control, and other feedback systems], robotics, and wireless applications.

Historically, textual-based representations for algorithms (such as Assembly and C) along with
corresponding assemblers and compilers were used to produce DSP object code. Development
of applications by use of textual representations as the basis for algorithms involves considerable
expertise by the person developing the algorithm, and generally involves a significant amount of
labor and time to produce the final working code for a system. In short, the process is laborious,
time consuming, error-prone, and often requires the learning of relatively cryptic syntax. Another
disadvantage is that the documentation and description of the system is generally a somewhat
distinct and independent task. Accordingly, there has been a need to provide a method for
efficiently generating object code from a graphical, as opposed to textual, construction.

Development of algorithms with RIDE/VAB is similar to development in C in that variables,
operators, expressions, and functions are used to create other functions, and/or the overall
program. The difference is that each of these constructs is expressed graphically through
component-based design as opposed to textually. Although initially quite different than textual-
based software coding, the advantage of developing an algorithm similar in nature to how an
engineer typically constructs and conceptualizes (i.e., a block diagram) has definite advantages
during the course of a project’s development.

This approach is especially productive for those with limited experience and expertise in
assembly, C and other textual algorithm development tools, and thereby allows the creation of a
working real-time DSP system where it would have been considered impossible before. In
addition, the self-documenting nature of the algorithm/design is an important consideration, and
allows for a quick learning curve by other engineers, or by the same engineer at a later date. The
ability to support a number of different processors allows for relatively painless migration from
one processor family to another. With its open software architecture, extensibility and creation of
new components is very easily accomplished. And with a small amount of initial learning, well
written, easy-to-follow, modular, algorithms can be designed very quickly by the user. The
RIDE/VAB products were created by virtue of leveraging over 15 years of experience in DSP
development software for the PC.

1.1. What is ‘Graphical DSP’ or ‘Block Diagram’ Programming?
DSP algorithms are created from a graphical design, or block diagram approach by using a
methodology of developing DSP algorithms and systems graphically by simply connecting
functional components together; this graphical design is then used to produce DSP object code
directly within the environment – no C compiler or assembler required. This method of
component-based design is quite similar to drawing a ‘block diagram’ of the system being
designed.

1.2. Component Oriented Nature of Design – “Black Box” Design
Component-based design methodology affords the designer with the luxury of not having to code
each individual algorithm function from scratch. Instead the designer can break the entire design
down into a grouping of separate “black boxes”, each of which are responsible for implementing a
specific task. This black box approach lends itself to making the “big picture” easier to see, and
removes the designer from ever having to know how the specific function works, so long as
he/she understands what utility the algorithm provides. In this fashion an entire real-time DSP
application can be constructed from individual block components of pre-defined purpose.
Building DSP applications in this way will allow individuals to more quickly and easily construct
valid DSP designs.

1.3. Graphical Compiler Analogy
RIDE/VAB can be thought of as a "Graphical DSP Compiler" – as opposed to a C compiler for
example – and allows you to create a DSP algorithm from a graphical design, or block diagram
approach. Using component-based functions, algorithms are efficiently crafted and directly
compiled into DSP Object Code. This technology provides dramatic reductions in development
time while yielding increased maintainability of DSP projects.

Just as C compilers turn a textual language (i.e., C source code) into DSP object code,
RIDE/VAB turns a graphical language (i.e. block diagram) directly into DSP object code. Similar
to a C-compiler or linker, RIDE/VAB allows for the use of DSP libraries to resolve block
component function calls. This allows the designer to make choices as to using third-party link
libraries to optimize performance. With this design methodology users will write much or all of
their algorithm, or software, graphically as opposed to textually (C/assembly). The savings in
design/development time as well as the advantages of maintainability and self-documenting
nature of graphical design are considerable.

Similar to a C compiler, algorithms may be developed for a number of targets, including industry
standard DSP boards that may already be in the marketplace or custom target hardware
developed by the end-user. In fact, just as DSP chip simulators are used in conjunction with
textual-based code development, they also may be used along with code developed graphically.

1.4. The Integrated Circuit – Possible Case Study?
In the hardware design world there may exist a possible case study: in the earlier years when
products were designed using resistors, capacitors, and transistors (or vacuum tubes),
sometimes hand-soldered from lead to lead, design cycles were much longer, maintainability and
reproducibility of design was inferior to that of today. Could it be that the introduction of
component based design in the hardware world – the introduction of the Integrated Circuit (IC) –
improved overall hardware design in a fashion similar to what might be expected from component
software design? When looking at the back of old radios and TV’s, does the hand soldering of
resistor to capacitor remind us of hand crafting assembly or C textual source code? We believe
that it does, and with graphical component-oriented design, the software design world may reap
the benefits that have already been seen in the hardware design world.

Section 2. Several Methods of Graphical DSP Programming
There are several different methods that can be used to graphically create design algorithms for
use on a DSP. These include simulation and systems modeling, limited real-time development
on a PC, simulation with subsequent C source code generation & final cross-compilation to a
DSP, and direct DSP object code generation. Although Hyperception has products that address
all these facets well, it is the latter that represents a new, inventive, and powerful means of
graphically programming a DSP.

2.1. Simulation/Modeling on PC

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

Block Diagram of Application

PC-based Simulation

In this case, a block diagram of the system is created which
is used to simulate the application.

PC-based Simulation from graphical block diagram

One method where a block diagram approach might be used in the development of a DSP
application lies in the simulation and modeling of a DSP algorithm on a PC. In this case the block
diagram design is implemented on the host PC and allows the designer to develop his DSP
application without generating any DSP executable program. The process is one of algorithm
simulation as opposed to targeting a DSP for real-time program execution. This method is often
useful for trying “what-if” scenarios and prototyping a design algorithm. The main benefit from
this approach is the reduction of technical risk as the concept is proven in simulation prior to
being applied to actual real-time DSP hardware using conventional development methods. An
example of this would be found in Hyperception’s Block Diagram product. Although for many
applications this use of graphical block diagrams is all that is required, for others the fact that the
design cannot be executed directly on a DSP is a drawback.

2.2. Limited Real-time Development on PC

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

Block Diagram of Application

In this case, a block diagram of the system is created which
may actually run in real-time on a PC. Typically, the acquisition is
performed by a sound card with microphone/speakers or
standard PC-based video CCD camera.

PC-based Limited
Real-time

PC-based limited real-time development from graphical block diagram

Another interesting method of developing a DSP application from a graphical approach is the fact
that with today’s faster PCs and the use of low-cost sound cards and video cameras allows
some limited real-time DSP applications to be constructed and implemented on a PC. Of course
this approach requires that the software used for the development of the block diagram must
provide sufficient speed so as to allow the design algorithm to run in real-time on the host PC.
Again, an example of this is Hyperception’s Block Diagram product in which the individual block
components run at executable speed, as opposed to other block diagram type of products that
run at interpretive (or script-driven) speed. Advantages of using a sound card or video camera
with a PC to allow limited real-time development include the relative inexpensive nature of PC-
based sound cards and video cameras (as opposed to dedicated DSP hardware). Some
drawbacks include limitations of the rate at which an algorithm can sustain real-time operation, as
well as some delay issues associated with perhaps using a larger framesize to allow the
processing of the algorithm in real-time. Additionally, direct support for networked PCs such as
TCP/IP over standard Ethernet allows for scalable systems to be constructed from a number of
low-cost PCs to address higher processing bandwidth applications, perhaps for a data intense
real-time system.

2.3. C Source Code Generation

For x=0;x<12; x++
 do this thing; /* this is a t est /
 do that
 do again
end x
next loop over y ; /* this is a t est /
 do something else ; /* this is a t est /
 do it again
end y
next loop over y ; /* this is a t est /
 do something else ; /* this is a t est /
 do it again
end y

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

Block Diagram of Application

Generated C Source Code

Generally, a block diagram of the system is created which
is used to simulate the application. Subsequently the tool
generates a textual source representation, such as C, which
is then compiled using a standard C cross compiler to create
the final DSP Object Code.

C Compiler

DSP Target

Simulation with subsequent C source code generation
from graphical block diagram

Another means of designing an algorithm via graphical means is to employ C source code
generation techniques in conjunction with a PC-based block diagram simulation. In this scenario
the DSP algorithm is first constructed as a block diagram simulation that executes on the host
PC. After the desired algorithm has been constructed and the simulation yields the desired
results, then the entire block diagram design can be generated as its C source code counterpart.
Typically this is done through the use of a source code generation tool that is capable of
producing the C source code that implements the simulated design. An example of this is found
with Hyperception’s Block Diagram Enterprise Edition and RIDE Enterprise Edition development
software. These packages allows for the graphical creation of block diagram worksheets to
simulate a DSP design algorithm, and then allows for the C source code creation of the algorithm.
The resulting source code can then be targeted to a specific platform and may include cross-
compilation to a target DSP by using the traditional DSP chip vendors C-
compiler/assembler/linker tools.

Advantages of the C Source Code Generation approach include the considerable reduction in
man time associated with creating C source code from scratch, and also having access to the
algorithm source code for modification and archival purposes. Additionally, the C source may be
used to target virtually any processor architecture that is supported by a conventional ANSI C
Compiler. Disadvantages include the higher cost of the development software itself, the
requirement and associated complexities of using the traditional C-compiler tools to cross-
compile the C source code to DSP machine code, as well as the potential of having to additionally
modify the resulting source code for real-time usage. Also, the lack of actual DSP profiling
capability during the simulation doesn’t directly allow you to determine whether or not the
simulated block diagram algorithm will in fact execute in real-time, or even fit within memory
constraints, on the target DSP.

Could there possibly be a better way in which to develop real-time DSP algorithms from a
graphical block diagram approach?

2.4. Direct DSP Chip Support - Object Code Generation

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

Block Diagram of Application

Generated
DSP Object Code

In this case, a block diagram of the system is created which
is used to directly create the DSP Object Code for the application.

DSP Object
Code

Direct DSP Object Code Generation from graphical block diagram

RIDE/VAB DSP development software from Hyperception offers a significant improvement in the
way in which a DSP can be programmed from a graphical block diagram approach. These
software tools have benefited from over 15 years of experience in DSP development software for
the PC. Unique to these tools is the capability of generating DSP machine code directly from the
block diagram algorithm itself. Direct DSP chip support through object code generation from a
component-based block diagram allows for the graphical programming of a DSP without ever
requiring that source code be produced for the design. With this approach the ‘source code’ for
the design algorithm is the block diagram representation itself. This design environment allows
for both a fine-grained and large-grained approach while offering design flexibility, efficient object
code generation, and algorithm maintainability.

2.4.1. Does not require C or Assembly Language Programming
The direct DSP object code generation approach ensures that no C or assembly language source
code need ever be required in order to program a DSP. Programming is done at an intuitive
block diagram level, and the result is an executable DSP program – a program of the same type
that is produced by a traditional C-compiler/assembler/linker. Data flow and the program
execution are governed by graphical constructs as opposed to those used in C or assembly.

2.4.2. Fine Grained - Compiler Analogy
One advantage of RIDE/VAB component-based graphical block diagram design to produce direct
DSP object code is the inherent ability to support a fine-grained approach to signal processing.
Individual block components each represent algorithms that are packaged as small units of
machine code that implement the intended function. This fine-grained approach allows for such
low code overhead that they could be considered to be “inline assembly” code. This implies a
powerful capability: the designer can very quickly create his own unique functions by
incorporating lower-level block components in a hierarchical fashion to construct new block
components – all the while maintaining very low code overhead. The capability of being able to

construct a DSP design algorithm from a fine-grain approach without losing performance or
increasing overhead is quite extraordinary.

2.4.3. Large Grained – Component Delivery/Usage Vehicle
In addition to providing a fine-grained approach, RIDE/VAB DSP software allow for a large-
grained approach to programming a DSP through direct object code generation. Instead of
thinking in terms of constructing a DSP algorithm from low-level block components, the large-
grained approach to DSP design allows for the capability of using just a few block components to
implement the entire algorithm. For example, place a Modem block component into an empty
worksheet, and voila, you’ve just implemented your modem design on a DSP. The ability to take
a very large grain approach in a graphical design is an important factor to consider. This aspect
lends itself to the notion that a graphical representation of an algorithm can be represented by
high-level block components that implement the entire desired system. This ability enables the
development tool to be used as a delivery vehicle to rapidly produce sophisticated DSP designs.

2.4.4. Building DSP Applications (Generating DSP Object Code Files)
Implementing DSP applications for real-time operation by directly generating efficient DSP object
code can be as simple as selecting the desired function components, establishing data flow and
conditional logic amongst the components through line connections, and selecting individual
component setup parameters. The resulting DSP executable is ready for use in the intended
DSP application.

2.5. Direct DSP Board Support - Live Real-time Interactive Development with
Actual DSP Hardware

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

3URFHVV

�

Block Diagram of Application

Real-time Interactive
Application

on DSP Hardware

In this case, a block diagram of the system is created which
is literally running in real-time on a DSP target system. The
Block Diagram is actually live and interactive, allowing the
engineer to modify parameters ‘on-the-fly’ and observe actual
real-time waveforms and data.

DSP Hardware

Live real-time interactive development on DSP hardware
from graphical block diagram

A powerful capability lies in the ability to construct a DSP algorithm graphically and then
immediately see the results running on the target DSP. The RIDE/VAB environments offer
support for a wide variety of DSP hardware and enable the designer to get immediate feedback
as to how the algorithm is running on the DSP. The block diagram algorithm is not being run as a
simulation, it is instead executed directly on the target DSP. This capability allows for efficient
design of the algorithm. Data can be viewed graphically at any (or many) point(s) in the block
diagram implementation. DSP profiling information can easily be obtained so that you can see
just how much – or little – processing power is being consumed by the design. The capability of
getting immediate feedback (e.g. waveform displays, D/A output, etc.) in the design is an
important consideration when using a graphical design environment.

Section 3. Important Considerations for a Graphical DSP Design
& Development Tool

There are several important considerations involved when evaluating the merits of using a
graphical design approach to implement DSP applications. These include whether or not the
design tool provides for an Open Software Architecture, whether or not the tool produces efficient
DSP implementations, whether the tool offers true, n-level hierarchical support, and the ability to
properly handle recursion in component-based block diagram designs.

3.1. Open Software Architecture
The RIDE/VAB DSP development environments are based upon an Open Software Architecture
that employs object-oriented programming concepts. These tools were designed with the idea in
mind that DSP developers must be able to expand upon the base development tool and easily
customize it to meet their unique requirements. An Open Software Architecture must allow for
the ability to quickly create new block components, provide design efficiency, support true
hierarchical design, support recursive data paths, provide an interoperability with existing DSP
development tools, and most importantly, provide a DSP-centric focus to algorithm design &
development.

3.1.1. Creating New Components
The designer who uses a graphical development tool to produce DSP applications must not be
constrained to using a fixed set of block components when implementing his/her design. There
must be a convenient method for the designer to augment the existing set of block components
with unique, custom functions. With Hyperception graphical products, there are two methods of
creating new (user-developed) block components – graphically within the environment, or
conventionally external to the environment.

Graphically Creating New Components
The ability to graphically create new block functions by encapsulating existing block components
is an important feature of a graphical DSP design environment. By leveraging lower-level block
components a designer can create a single more powerful block component without ever having
to write any C or assembly code. For example, a series of Delay, Gain, & Add optimized block
components can be used together to implement an optimized FIR filter, and then the entire
grouping be condensed (via hierarchy) into a new, single block component. This new block
component could then be used in subsequent DSP designs. Creating customized block functions
via a graphical method is a powerful feature of RIDE/VAB DSP software development tools.

Using Conventional Compilers/Assemblers to Create New Components
If a graphical approach to DSP design is to be accepted it must supply a means of adding unique
block components that implement a designer’s custom algorithms. In many companies the
engineer will have existing bodies of C and Assembly source code that reflect years of hard-
earned intellectual property; a good graphical development tool must be able to leverage this
textual base of code efficiently and practically. To address this issue both a Block Wizard and an
eXpressDSP Component Wizard exist that will allow for the quick creation of new block
components. These robust wizards, which have been developed for over a decade, will walk the
user through a series of screens in which certain aspects of the intended function are discerned.
The resulting source code templates that are generated by the wizard will allow the user to add
their specific algorithm to the template. The completed templates are then compiled by traditional
methods such as Microsoft Visual C/C++ and an appropriate DSP vendor C-
compiler/assembler/linker. By using this approach the designer is able to create entire libraries of
block components to augment those supplied standard with RIDE/VAB.

3.2. Efficiency
The graphical design/development tool and the actual DSP program produced by the tool must
both be efficient. The designer should be able to move quickly when constructing their algorithm
and should not be constrained by the development environment itself. An efficient development
environment should take care to make judicious use of available DSP memory, provide
immediate feedback capabilities (such as waveform displays and memory read/write) for “on-the-
fly” DSP development, and reduce any overhead to bare minimums. The resulting DSP program
that is produced should be one that is free of unnecessary overhead and implements the desired
design algorithm in real-time on the target DSP.

3.3. True Hierarchical Design
Hierarchical design is important when creating block diagram representations of a DSP
application. From an aesthetic point-of-view, hierarchy makes the entire design more readable
and easier to follow. It also allows you to take better advantage of the block diagram “real-
estate”. Of course, hierarchy is also a convenient method employed when creating custom block
components from existing lower-level blocks. However, true n-level hierarchy must ensure that
the designer can create hierarchy blocks that consist of other hierarchy blocks, that in turn use
other hierarchy blocks, and so on. The graphical design environment must also be constrained
by the fact that the resulting hierarchical components be treated in the same manner as are
individual block components. For example, the designer should have the capability of using
conditional connection logic to govern under which conditions, and how many times the
hierarchical block should be executed. True hierarchical design is often “easier said than done”
and serves as an important part of the RIDE/VAB graphical design environments.

3.4. Recursive Support
Many DSP algorithms require the use of data feedback paths and rely on the use of recursion in a
design application; IIR filtering and control-oriented feedback systems are typical examples which
inherently require recursive structures. The ability of a graphical block diagram development tool
to meet this need is critical to producing DSP applications. It is important for the tool to be able to
provide a proper answer to the “chicken and egg” question of recursive algorithms.

3.5. Interoperability with Existing Development Tools

3.5.1. DSP Development Software
Interoperability with conventional algorithm development tools was also an important
consideration for RIDE/VAB development software. As users desire to add their own ‘routines’ or
IP to their design by creating custom block components they can either create them graphically
through a hierarchical approach or by generating a block component source code template. In
the latter case, the user may feel comfortable in leveraging existing code generation tools (C
compiler, assembler) to create these new components that may then be used by RIDE/VAB.
Both products support standard DSP linkable libraries in addition to any newly created DSP
object files that have been created via ‘conventional’ means, and can typically work alongside the
DSP debuggers used in textual-based DSP development.

3.5.2. DSP Development Standards
One nice example of interoperability with an existing DSP development standards is the
eXpressDSP Component Wizard. This wizard is works with RIDE/VAB to help the design
engineer create algorithms that adhere to the Texas Instruments TMS320 DSP Algorithm
Standard. These eXpressDSP-compliant algorithms can be used directly in the RIDE/VAB
graphical design environments. The Component Wizard automatically generates the textual C
source code base code that is required for adherence to the standard, and offers direct support of
TI’s Code Composer Studio (CCS) product. This level of interoperability provides a saving of
considerable man-time that is normally associated with developing an algorithm from scratch. In

addition to the eXpressDSP and CCS support (and upcoming support for DSP/BIOS)
RIDE/VAB can be thought of as a simple method in which to harness components effectively.

3.5.3. DSP Development Hardware
Lastly, support for many industry-standard DSP boards, hardware is an important capability.
RIDE/VAB support a number of common DSP boards, including low-cost “DSK”, “EVM” and “EZ-
Kit/Lab” types of hardware from the major DSP semiconductor companies.

DSP-Centric Focus
If a graphical design environment is used to develop DSP applications, shouldn’t that
environment be one that has been built to provide a DSP-centric focus?

Just because a tool provides a block diagram interface doesn’t guarantee that the algorithm
produced actually employs a DSP-centric design approach. A block diagram development tool
may simply be making use of some “add-on” toolbox to address a DSP function library. Often
times this add-on library is driven from a sales-point-of-view to satisfy a market demand. The fact
that a toolbox of DSP functions may exist does not imply that the development tool itself will
produce optimal DSP block diagram implementations. However, RIDE/VAB block diagram
environments have been designed to employ DSP-centric concepts with DSP algorithm
development in mind: they were built for speed.

A DSP-centric focus requires that issues such as fixed-point and floating-point arithmetic are
addressed, and that the DSP design can support both block-oriented, frame-based processing
and single-point sample-by-sample processing. Additionally, direct support for a real-world
interface must be available.

3.5.4. Fixed-Point / Floating-Point
An algorithm that is to be executed on a DSP must consider whether the DSP is a fixed-point or
floating-point processor. A graphical DSP development tool should provide for this capability so
that the designer is able to select precision settings for any block components used in the block
diagram design.

3.5.5. Single Sample Processing / Block-Oriented Processing
The graphical design environment should be flexible enough to provide for both single-sample
processing and block-oriented, frame-based processing in order to address DSP algorithm design
concerns. Many DSP applications (e.g. control systems) require that single-sample processing
be applied, while others (e.g. speech processing) make use of a frame-based approach. Each of
these processing types both have their own unique requirements and a DSP-centric graphical
design environment such as those offered by Hyperception will properly address them. The
following two figures use analogies wherein the data to be processed by a real-time DSP system
is shown as water; the first figure demonstrates the model for a frame-based algorithm (funnel),
and the second figure demonstrates the model for an interrupt-based, or single-sample based
system (pipe).

Typical Frame-based model for Real-time

)XQQHO

'DWD�,Q

'DWD�'HFLVLRQ�2XW

• As long as funnel does not
overflow, system is still in real-
time

• Amount in the top part of
funnel is related to the
buffering logic, and directly
related to the processing delay

Frame-based Architecture for Real-time DSP – Telecom and other Applications

Interrupt-based model for Real-time

3LSH

'DWD ,Q

'DWD�'HFLVLRQ 2XW

• What goes in, comes
directly out

• Very little processing
delay, so system is quite
responsive

Interrupt-based Architecture for Real-time DSP – Control Applications

3.5.6. Direct Support for Real-world Interface (A/D, D/A)
Often implied in the construction of a DSP application is the fact that the DSP will be operating on
some real-world data in an effort to effect some desired result. There is often a need for a
designer to be able to access real-world data via an analog-to-digital (A/D) conversion process
and/or generate data via a digital-to-analog (D/A) conversion process.

A DSP-centric approach to graphical DSP development requires that there be some means of
directly supporting these A/D and D/A processes so that the designer is able to use actual real-
world data during the construction of their application. This ability to receive immediate feedback
while working on their DSP application is a powerful development consideration. Graphical
programming via direct DSP object code generation is the only way to make this type of
development possible.

Section 4. Targeting DSP Hardware – Graphical Tool for “Rapid
Production”

The RIDE product directly supports a variety of important DSPs and includes the Analog Devices
SHARC, as well as the Texas Instruments C2000, C5000, and C6000 ISA families (C3x
is also supported). VAB is a subset of the RIDE product and directly supports only Texas
Instruments DSPs (and does not support PC-based simulation as RIDE does).

RIDE/VAB graphical design products allow you to quickly produce a completed DSP application.
The finalized DSP program can be implemented on a target DSP from directly within the
RIDE/VAB environment such that the designer can change algorithm parameters “on-the-fly” or
view data results through a GUI. Additionally, the finalized DSP program can be built to address
an embedded DSP application.

4.1. Ability to target Embedded DSP Applications
RIDE/VAB software can be used to develop complete DSP programs and then target embedded
DSP applications. The Application Build command is powerful feature that is used to produce the
current real-time design to an executable DSP application that can be used in an embedded
system or other platform. The output DSP executable file can be used to program Flash memory,
loaded into a simulator or loaded into target DSP hardware with an emulator/debugger.

The DSP executable file that is produced is effectively the same as if you had written
conventional textual source code yourself, and then used a DSP
assembler//compiler/linker to create it.

Because the RIDE/VAB memory map is user-configurable, and the design environment supports
a “virtual” DSP mode without requiring a DSP board in the system, applications can be created
and produced for any target hardware. In this usage, RIDE/VAB may best be thought of as an
advanced DSP ‘Graphical Compiler’.

4.2. Ability to target plug-in Industry Standard DSP Development Boards
Using RIDE or VAB in conjunction with a DSP development board makes for an extremely
effective development environment. Algorithms can be quickly constructed and immediately
executed on the development hardware. In this way the designer is able to quickly gauge the
performance of their design, and make immediate modifications to his algorithm if necessary.
The ability to build a DSP application directly in DSP memory provides many benefits. The DSP
algorithm can easily be evaluated, with the evaluation yielding real-world results as opposed to
providing simply an algorithm “simulation”. Finally, RIDE/VAB supports direct programming of the
FLASH on Industry Standard DSP Hardware, making the term ‘Rapid Production ’ a reality.

Section 5. Applications of Graphical DSP Design
Several examples of using RIDE//VAB to target specific DSP hardware are presented below.
These design examples contain information on how the algorithm was actually created in VAB or
RIDE. These examples will illustrate several important DSP application areas: Communications,
Control, Pro-Audio, Telecom, Image Processing, Research, as well as Teaching/Education.

5.1. Communications
The screen capture shown below represents a graphically designed, basic modem application
that is running on a C5000 DSP; the target in this case happens to be a C5402 DSK. The design
process is the same as the C2000 and C6000 examples below, and of course the user may run
directly in real-time (with live interchange of real-time data) within the environment, or use
RIDE/VAB as an object ‘Code Generation’ tool to create the actual DSP object code file for use.

A modem transmitter application is designed graphically using simple Phase Shift Keying (PSK)
method of modulation. A pseudo random generator is used to create the bits used to key the
modulator. Note the use of hierarchy in the design of that component (Pseudo Random Noise
Generator); this component was itself designed as a worksheet, or block diagram, and is actually
made up of a number of other components. Right-clicking on this component would ‘blow-up’ the
component, showing the complete block diagram, which could also include components which
were designed hierarchically (to N levels). The random number is converted to integer, masked
appropriately (to 2 bits), and then used to drive the actual phase value used by the carrier signal
(RT Sine Generator) which is creating the output signal. The resulting signal is sent to the D/A as
well as uploaded to allow interactive viewing of the modulation. If the D/A is driving a speaker,
the signal may be listened to in real-time as the display is being updated live.

Simple PSK modem application graphically designed with RIDE/VAB for C5000

5.2. Control
The following screen capture illustrates an ACI motor control application designed graphically for
C2000; the development hardware in this case is the F243 EVM, designed by Spectrum Digital.
The design process is identical to the C5000 example above, with the user selecting those
software components desired for this real-time application and connecting them together with a
mouse.

In this example, which would likely be used during the development of a larger, more complex
system, the interactive capability of RIDE/VAB is used to allow the engineer to vary the reference
level (ref) corresponding to the desired set speed of an ACI motor application in a live, hands-on
fashion. This speed value is echoed to some LEDs located on the target hardware, as well as
being used to drive other software components (Volts per Hertz Profile, and Space Vector
Generator) which then create the actual 3-phase real-time waveforms. These waveforms are
sent to the D/A converter that could then drive the actual motor. The generated waveforms also
happen to be uploaded (interactively, again) to allow the engineer to observe them as they are
created, both as instantaneous values (numeric indicators) and as a complete waveform display.

Although not shown in this example, most motor control applications would make use of recursive
structures (feedback) as well as drive the onboard PWM signals – both of which are supported by
RIDE/VAB software. Once again, the actual DSP object code may be obtained directly from this
block diagram or RIDE/VAB ‘source’ as an object file that looks as if it had come from an
assembler/linker, ready for programming into ROM, Flash memory, etc.

Design example for a real-time ACI motor control system using a C2000 DSP and
RIDE/VAB

5.3. Pro Audio
In the figure below, an example application which could be used by those working in the audio
market is shown. A graphical block diagram has been constructed to allow analysis of music,

including pitch and envelope displays. Other examples in the audio market might include such
things as music synthesizers, voice modification units, distortion and other instrument effects, and
basic instrument modeling as well as real-time analysis of pro-audio related applications. The
ease at which these applications are created, tested, and potentially fielded is directly related to
the fact they may be developed graphically as opposed to conventionally developed using C or
Assembly coding.

Example with RIDE allowing for fine-pitched voice analysis in music

5.4. Telecom
So how does one design a DSP algorithm graphically? This example demonstrates RIDE/VAB
graphically harnessing the capabilities provided by the TMS320 DSP Algorithm Standard
technology, namely a G.723 Encoder/Decoder, for C6000. The target DSP application makes
use of eXpressDSP-compliant algorithms and is executed on a C6000-based DSP hardware
target.

The application takes an audio input such as a microphone, or other audio source and performs
some DSP processing. The RIDE/VAB worksheet applies several XDAIS-compliant algorithms to
the audio stream and then sends it to an audio output so that the results can be heard over a
speaker. The data is also uploaded from the DSP for subsequent graphical display so that a
visual comparison can be made between the original input signal and the decoded signal.

Using RIDE/VAB to implement this real-time DSP design is actually quite simple. The user
creates a “block diagram” representation of the algorithm by simply selecting individual block
components through point and click methods. Each block component can be dragged onto the
worksheet by selecting from either a floating tool palette or a Function Selector tool. The block
components are arranged in the worksheet by dragging them with the mouse. Individual
component parameters (such as sample rates, framesize, etc.) can be user-specified by right-
clicking on a block icon. The data flow for the algorithm is established by using the mouse to
connect the block components together through a line connection. The entire algorithm may then

be run directly in real-time on the target within the RIDE/VAB environment, with no textual source
code (C, Assembly) generation steps required. If desired, the graphically designed algorithm may
then be ‘built’ to a standard DSP object file, for programming into ROM, FLASH, etc., or
downloaded to other targets (including a simulator) via Code Composer Studio.

As can be seen from the figure shown below, the audio input is represented in a RIDE/VAB
worksheet through a single A/D block component (located near the left-hand side of the
worksheet). The block diagram depicted in the worksheet graphically shows the data flow for the
algorithm. The eXpressDSP compliant algorithms used in this worksheet example are two
vocoder algorithms that are represented by the G.723 Encoder and G.723 Decoder block
components. In fact, these components are actually the same vocoder algorithms that Texas
Instruments include as part of its eXpressDSP Developer’s Kit, with the same processing time
requirements (so RIDE/VAB is not adding a layer of ‘fat’ to the design). The D/A block
component in the worksheet represents the audio output data sent to the D/A converter.

The audio output will depend on whether or not the G.723 algorithm is being used. The
worksheet can be user-modified so that the audio input can be connected directly to the audio
output (bypassing the vocoder encode and decode block components). The results can then be
compared to those achieved when using the eXpressDSP compliant vocoder block components.
In this example, the most noticeable differences become apparent when music that has a wide
dynamic range is used as an input to the DSP hardware.

Simple G.723 Encode/Decode application graphically designed
with RIDE/VAB for C6000

5.5. Research
The ability to quickly modify DSP designs and change parameters ‘on-the-fly’ lends itself well to
research and development efforts. Simply by using a live DSP target, the user may quickly
observe waveforms, data, etc., while the DSP is running in real-time. The quick iteration cycle of
modifying the system and observing the effects saves much time during typical research

endeavors. In addition, those performing the research need not expend time on becoming C and
Assembly language experts, but can begin to graphically program their DSP system relatively
immediately.

5.6. Teaching/Education
Obviously a graphical method of programming DSP’s translates into the academic setting rather
easily. 1The potential for teaching concepts and seeing them run in real-time, without the prior
requirement for the students to be experts in writing C or Assembly source code has real benefits.
This graphical method of programming DSP’s is being used in a number of school systems for
allowing real-time DSP using actual real-world hardware to be taught/used at much earlier levels.

5.7. Virtually Anything else…
The graphical methodology employed by RIDE/VAB software makes it suitable for a wide variety
of signal processing applications including those in image processing, medical-related
technology, automotive applications, military applications, and many more. 2Application notes
exist for a variety of product areas, with more market areas being addressed using DSP
technology than ever before.

1 For those interested, Hyperception has a white paper specific to using this graphical
methodology for teaching real-time DSP. This paper may be requested by e-mailing
info@hyperception.com .
2 Application notes may also be requested by e-mailing info@hyperception.com .

Section 6. Benefit vs. Cost Tradeoff
The engineer involved in creating a DSP application has to consider many factors when deciding
on how best to approach the task at hand. The benefit vs. cost tradeoff over application
development concerns and application design concerns need to be examined.

6.1. Application Development Concerns
Concerns throughout the development cycle for new DSP designs have been addressed well with
RIDE/VAB. Items such as the time-to-market, learning curve, maintainability, interoperability, and
cost are important factors that were used to drive the overall RIDE/VAB architecture. The
following are considerations about developing DSP code graphically:

6.1.1. Time-to-market
Time-to-market is one of the most critical attributes of today’s DSP designs; getting to market late
can be a death sentence to an otherwise good product concept. With RIDE/VAB, the design
schedules can shrink considerably, getting products out the door much more quickly than done
previously. Since the design is effectively the same or similar to the initial design block diagram,
the implementation can be accomplished in much less time. In addition, the typical iterative
concept/code/debug cycle where much engineering time is spent, is reduced dramatically, as
designers can quickly try things in real-time and observe the effects on the DSP dynamically,
reducing hours into minutes. Since the resulting graphical design speeds project development by
generating a conventional COFF file ready for production, the term ‘Rapid Production’ fits this
type of design methodology particularly well.

6.1.2. Learning Curve Requirements
The learning curve for this technology is relatively shallow, allowing its use on even first-time
(perhaps only-time) DSP applications. Since the construction of DSP algorithms is very similar to
the design as drawn in block diagram fashion, and since designs may be implemented without
need for C or assembly, it may be possible to eliminate the learning curve for these tools. If not
entirely eliminated, the time spent using these tools may be reduced substantially reducing
expertise requirements for many DSP applications. This reduction of learning curve will allow
DSP to be used in new products and market areas that were traditionally non-DSP.

6.1.3. Maintainability
One of the benefits of designing graphically is that the components used are true ‘Black Box’
components, and connecting them graphically precludes the possibility of the internal workings of
one component intermixing with another. Another way of stating this is that it is virtually
impossible to create an algorithm using ‘spaghetti code’, since the design is completely graphical,
not textual. By ensuring the use of true ‘Black Box’ design, maintainability of design increases.
Additionally, the fact that the RIDE/VAB design allows for hierarchical components (sub-system
design) and that it corresponds to a typical engineering block diagram, allows for better
maintainability and transfer to others should the initial DSP designer no longer be available to
maintain the project. Reusability of software components is, of course, an integral part of this
design paradigm.

6.1.4. Interoperability with Existing Development Tools
Interoperability with conventional algorithm development tools was also an important
consideration for RIDE/VAB development software. As users desire to add their own ‘routines’ or
IP to their design by creating custom block components they can either create them graphically
through a hierarchical approach or by generating a block component source code template. In
the latter case, the user may feel comfortable in leveraging existing code generation tools (C
compiler, assembler) to create these new components that may then be used by RIDE or VAB.
Both products support standard DSP linkable libraries in addition to any newly created DSP
object files that have been created via ‘conventional’ means. This level of interoperability

provides a saving of considerable man-time that is normally associated with developing an
algorithm from scratch. In addition to the eXpressDSP and CCS support (and upcoming support
for DSP/BIOS) RIDE/VAB can be thought of as a simple method in which to harness components
effectively. Although VAB is specific to Texas Instruments, RIDE is generalized and includes
direct support for Analog Devices SHARC processors, with additional DSP’s being supported in
an on-going fashion. Of course, the Enterprise Edition of Hyperception products, which includes
the ANSI C source code generator, may be used with DSP’s from virtually every vendor using a
conventional textual based (C source) code approach.

6.1.5. Cost
Retail price points for Hyperception Graphical DSP Design products range from $1.5k to $10k; for
most engineering companies this should not represent a significant barrier for their DSP
application designs. When compared with the potential savings in both calendar time and Non
Recurring Engineering (NRE) labor, the cost of these tools is very reasonable.

6.2. Application Design Concerns
Another important consideration relates to how good the actual produced code is when the
algorithm has been designed graphically. The following considerations are related to DSP object
code which has been developed graphically:

6.2.1. Application Speed
Concerns over the speed of the resulting graphically-designed DSP applications are probably the
most common; what good is a DSP algorithm if it doesn’t run in real-time at the end of the
day? Although good common engineering sense and savvy would predict that the very nice level
of abstraction afforded by the RIDE/VAB’s graphical design must cost something – and that
something must be efficiency – they would likely be wrong. We believe that the larger ‘cost’ was
in the decade of development of the RIDE/VAB technology, not the resulting efficiency of code. If
one only considers this graphical design as a component delivery vehicle, able to sew together
components to create an overall algorithm, the ‘thread’ used to stitch them together is quite
small3. Another thought relating to efficiency, if one considers this graphical design as perhaps a
new-generation graphical language, then thoughts related to the conventional textual language (C
compiler) are in order; C was never designed as a language for DSP’s! Perhaps a language that
was designed for DSP’s, albeit graphical, may have certain inherent advantages for DSP
applications (such as support for fixed-point arithmetic, data flow mentality, etc.).

6.2.2. Application Size
In a similar fashion, the approach used with RIDE/VAB is such that very little additional code is
produced, so code bloat is typically not noticeable in the resulting application.

6.2.3. Embedded Development Issues
Another question that comes up quickly is related to how an embedded DSP target hardware is
supported. The answer is to view RIDE/VAB similar to a C compiler/Linker, which produces DSP
object code mapped to a specific piece of hardware. The linker typically uses information in a
CMD file to associate physical memory, etc. to the algorithm code segments; RIDE/VAB does the
same basic thing allowing the designer to specify memory maps, etc. that fit the particular DSP
target of interest. The graphical design is then used to produce the COFF file (DSP object file),
ready for downloading with a debugger, programming into a FLASH memory, etc.

3 Profiling information for a number of algorithms/applications may be obtained from
Hyperception, Inc. to address speed/efficiency questions

6.2.4. Device Independence
RIDE/VAB supports all TI ISA DSP platforms, including the C2000, C5000, and C6000. Support
for C3x and C4x architectures is also available.4 In addition, RIDE currently also supports the
Analog Devices SHARC DSPs directly. The ability to move from one DSP platform to another
allows for convenient migration as DSP applications are moved to newer, more powerful, or less
expensive DSPs. For TI DSP support, VAB is packaged for each ISA DSP family, similar to CCS
– VAB for C2000, VAB for C5000, and VAB for C6000. RIDE software (a superset of VAB)
contains drivers for all Hyperception supported types of DSPs.

4 Although C4x support is available in RIDE, current planning does not call for continued support
of C4x in RIDE and VAB.

Section 7. Hyperception’s Product Offerings in Graphical Design
Tools

Hyperception offers quality products for many types of DSP, mathematical analysis, and systems
simulation and modeling projects. These leading edge tools have been designed to provide you
with a component-based graphical design environment that is ideal for accelerating DSP project
schedules. Our products provide a distinct competitive advantage, and can serve as valuable
development tools that can ease DSP designs -- whether an application calls for proof-of-concept
work, or for rapid-production capability.

7.1. Hypersignal ® Block Diagram
The Block Diagram product has been created to provide a PC-based simulation and systems
modeling design environment. Support for standard sound cards allow for limited real-time
applications to be implemented. Block Diagram is available in Standard, Professional, and
Enterprise editions.

7.2. RIDE
RIDE component-based DSP development software provides all of the simulation and PC-based
capabilities found in Block Diagram, but additionally allows for the direct graphical development of
real-time DSP applications. In addition, RIDE contains drivers for all supported DSP chips and
DSP boards. RIDE is available in Standard, Professional, and Enterprise editions.

7.3. VAB (Visual Application Builder)
The VAB software is a subset of the RIDE product and provides direct DSP support for Texas
Instruments C2000, C3x, C5000, and C6000 DSPs only. VAB does not support PC-based
simulation directly.

7.4. ImageDSP Image Processing Software
The ImageDSP component-based image processing software provides a development
environment ideally suited for PC-based image processing applications.

Section 8. Summary
A graphical oriented design methodology, such as RIDE/VAB, represents a significant milestone
with respect to programmable DSP design; heretofore, only textual based representations (C,
Assembly) were the basis for creating algorithms for a DSP. With this powerful technology
engineers will be able to design much or all of their DSP algorithm, or software, graphically as
opposed to textually. The savings in design/development time as well as the advantages of
maintainability and self-documenting nature of a graphical design is of considerable importance in
widening the use and popularity of DSPs in a variety of applications, many of which have yet to
be conceived.

8.1. Future DSP Development
Graphical component-based design of algorithms will play an important part of the future for DSP
and related engineering areas, as well as software architecture design in general. Graphical DSP
Design represents a modern approach to minimizing the learning curve, improving the
maintainability, and to solving some of the problems presented by classical textual-based
algorithm development tool approaches. The benefits of this design approach are many and
should be worth considering for many new and existing DSP applications.

8.2. Contact Information
For more information, including product datasheets, technical application notes, or information
related to Real-time DSP for Education, contact Hyperception, Inc. at:

E-mail: info@hyperception.com
Web: www.hyperception.com
Voice: (214) 343-8525
Fax: (214) 343-2457

