
TMS320C6000 Imaging Developer’s Kit
(IDK)

Video Device Driver
User’s Guide

Literature Number: SPRU499
December 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

The Imaging Developer’s Kit (IDK), is a complete system consisting of hard-
ware and software designed to demonstrate the capabilities of TI’s
TMS320C6000 family of DSPs in the field of video/image processing. The IDK
also serves as a rapid prototyping platform for the development of image and
video processing algorithms. This document describes the software and hard-
ware components provided in the IDK.

How to Use This Manual

This document contains the following chapters:

� Chapter 1 – Overview , provides information about the software module
block diagram, software architecture, and describes how to use video de-
vice drivers.

� Chapter 2 – Video Display System , provides a block diagram and de-
scribes the function of the video sisplay system. Also contains a video dis-
play API referemce (VDIS).

� Chapter 3 – Video Capture System , explains and illustrates the video
display subsystem.

� Chapter 4 – Examples , provides code examples of video device drivers’
uses.

Related Documentation From Texas Instruments

The following references are provided for further information:

Documentation

TMS320C6000 Imaging Developer’s Kit (IDK) User’s Guide (Literature
number SPRU494)

Related Documentation From Texas Instruments

iv

TMS320C6000 Imaging Developer’s Kit (IDK) Programmer’s Guide
(Literature number SPRU495)

C6000 JPEG Information:

� TMS320C6000 JPEG Implementation Application Report (Literature
number SPRA704)

� Optimizing JPEG on the TMS320C6211 With 2-Level Cache Application
Report (Literature number SPRA705)

C6000 H.263 Information:

� H.263 Decoder: TMS320C6000 Implementation Application Report
(Literature number SPRA703)

� H.263 Encoder: TMS320C6000 Implementation Application Report
(Literature number SPRA721)

Text Conventions

The following typographical conventions are used in this specification:

� Text inside back-quotes (‘‘) represents pseudo-code

� Program source code, function and macro names, parameters, and com-
mand line commands are shown in a mono-spaced font.

Text Conventions

Contents

v

Contents

1 Overview 1-1.
1.1 Software Module Block Diagram 1-2.
1.2 Using the Driver Library 1-3.
1.3 Software Architecture 1-4.

2 Video Display System 2-1.
2.1 Display Block Diagram 2-2.
2.2 Display Timing and Events 2-3.
2.3 Triple Buffering Scheme 2-4.
2.4 Using the Display APIs 2-5.
2.5 Display Buffer Format 2-7.
2.6 Video Display API Reference (VDIS) 2-8.

3 Video Capture System 3-1.
3.1 Capture Block Diagram 3-2.
3.2 Capture Timing and Events 3-3.
3.3 Triple Buffering Scheme 3-4.
3.4 Using the Capture APIs 3-5.
3.5 Capture Buffer Format 3-7.
3.6 Video Capture API Reference (VCAP) 3-9.

4 Examples 4-1.
4.1 Draw a Box in 640x480x16 Display Mode 4-2.
4.2 Draw a Box in 640x480x8 Display Mode 4-3.
4.3 NTSC Capture to 640x480x16 Display Loopback 4-4.
4.4 NTSC Capture to 640x480x8 Display Loopback 4-6.

Figures

vi

Figures

1–1 Software Architecture 1-5.
2–1 Video Display Subsystem Block Diagram 2-2.
2–2 Display Buffer Format 2-7.
3–1 Video Capture Subsystem Block Diagram 3-2.
3–2 Capture Buffer Format 3-8.

1-1

Overview

The Imaging Developer’s Kit, or IDK, is a complete system consisting of hard-
ware and software designed to demonstrate the capabilities of TI’s
TMS320C6000 family of DSPs in the field of video/image processing. A key
component of this system is the video device drivers that offer a simple API for
accessing the video hardware. This document describes these drivers and
how to use them.

Topic Page

1.1 Software Module Block Diagram 1-2.

1.2 Using the Driver Library 1-3.

1.3 Software Architecture 1-4.

Chapter 1

Software Module Block Diagram

 1-2

1.1 Software Module Block Diagram

The video hardware has a video capture subsystem with a TVP5022 video de-
coder chip and a video display subsystem with a TVP3026 RAMDAC. There
are two independent APIs, one for video display (VDIS module) and one for
video capture (VCAP module). The drivers depend on DSP/BIOS II and take
advantage of the tasking model using semaphores. The drivers also use the
chip support library (CSL) for all on-chip DSP peripheral access.

The driver software is written specifically for the imaging daughter card de-
signed by TI. However, the APIs are simple enough that it may possible to port
the driver APIs to other hardware platforms.

The display driver uses triple buffering and these buffers are stored in the
DSK’s SDRAM. The display hardware generates line events that are tied to an
EDMA channel that in turn transfers lines of video from the display buffers to
the display hardware. This display data is sent to the RAMDAC and output
onto a standard 15-pin VGA monitor connector. The display hardware also
generates a frame interrupt to the DSP every vertical sync. The display driver
processes this interrupt and uses it to synchronize with the application using
a DSP/BIOS semaphore.

The daughter card has dedicated SDRAM for video capture data and triple
buffering is used. Composite video input goes into a video decoder chip that
in turn is written into the capture RAM. The capture RAM is memory-mapped
into the DSPs address space (read-only). This allows the DSP to directly read
the frames of captured video. The capture hardware also generates frame
events that trigger an interrupt to the DSP every vertical sync. The capture driv-
er processes this interrupt and uses it to synchronize with the application using
a DSP/BIOS semaphore.

Using the Driver Library

1-3Overview

1.2 Using the Driver Library

You need to do the following to use the drivers:

� Include the driver header files

� #include <vdis.h> to use display driver

� #include <vcap.h> to use capture driver

� Link in the driver library

� –l vcard.lib

� Predefine processor ID symbol, required for CSL (see CCS project op-
tions under Compiler–>Preprocessor).

� –d CHIP_6711

� Link in the CSL library file

� –l csl6711.lib

There are a couple basic steps every application needs to do to use the driver
APIs. Open a device (capture or display), call the device APIs, then close it
when done. Once a device is open, the APIs may be called over and over
again, you only close a device when completely done with it. Generally, an
application will open the devices at the beginning and leave them open
indefinitely.

� Open device:

� VDIS_open()

� VCAP_open()

� Call device APIs:

� VDIS_config()

� VDIS_toggleBuffs()

� VDIS_fill()

� VCAP_config()

� VCAP_getFrame()

� Close the devices (usually not done):

� VDIS_close()

� VCAP_close()

The open functions are used to do certain initialization and allocates system
resources such as EDMA channels. Closing a device frees up any resources
allocated during open.

Software Architecture

 1-4

1.3 Software Architecture

The device driver software architecture is illustrated in Figure 1–1. It shows the
different modules and the interfacing between them. The VCARD block repre-
sents the capture and display drivers. The top-level modules for the drivers are
VDIS and VCAP. The VDIS module defines the video display API and the
VCAP module defines the video capture API.

The VDIS module interfaces into the TVP2036 submodule which is responsi-
ble for configuring the RAMDAC.

The capture side is a little more complex; the VCAP module interfaces to the
TVP5022 video decoder module that in turn interfaces to the I2C module and
two micro-code modules.

All modules potentially interface into the CSL and DSP/BIOS. At the top is the
application. It interfaces into the VCAP and VDIS module and of course may
interface into the CSL and DSP/BIOS.

The driver software is written entirely in C. The modules consist of the following
files:

� VDIS: vdis.h, vdis.c

� VCAP: vcap.h, vcap.c

� TVP3026: tvp3026.h, tvp3026.c

� TVP5022: tvp5020.h, tvp5020.c

� I2C: i2c.h, i2c.c

� TVP5022NSQP: tvp5020nsqp.h, tvp5020nsqp.c

� TVP5022PSQP: tvp5020psqp.h, tvp5020psqp.c

Please note that while the code file names above are with reference to
TVP5020, they are equally valid for TVP5022. All of these source files are lo-
cated in the source archive vcard.src .

Software Architecture

1-5Overview

Figure 1–1. Software Architecture

VCARD

Application

TVP3026

VDIS

TVP5022PSQPTVP5022NSQP

TVP5022

VCAP

I2C

CSL & DSP/BIOS II

2-1

Video Display System

Topic Page

2.1 Display Block Diagram 2-2.

2.2 Display Timing and Events 2-3.

2.3 Triple Buffering Scheme 2-4.

2.4 Using the Display APIs 2-5.

2.5 Display Buffer Format 2-7.

2.6 Video Display API Reference (VDIS) 2-8.

Chapter 2

Display Block Diagram

 2-2

2.1 Display Block Diagram

Figure 2–1 shows the block diagram of the video display subsystem. First of
all, three display buffers are allocated in .bss which gets linked into the DSK’s
SDRAM. These buffers are allocated for the worst case, that is 800x600x16 =
960,000 bytes each times 3 = 2,880,000 bytes total. When a lower resolution
is used, some of the space is left unused.

Figure 2–1. Video Display Subsystem Block Diagram

Daughter Card

TVP3026
RAMDAC

Display
FIFO

DSK SDRAM

Display Buffer 2

User

Display Buffer 1

Intermediate

Display Buffer 0

Active

Display Timing

To RGB Display

6711 DSP

E
X

T
IN

T
6

E
X

T
IN

T
7

EMIF

EDMA
Controller

INTSEL

F
ra

m
e

In
te

rr
up

t

Li
ne

 E
ve

nt

Display Timing and Events

2-3Video Display System

2.2 Display Timing and Events

The Timing block of the diagram is implemented in an FPGA and generates
the display HSYNC and VSYNC signals based on programmable parameters.
VSYNC is connected to EXTINT6 and the HSYNC is connected to EXTINT7.
EXTINT6 is configured to generate a CPU interrupt and the interrupt service
routine is defined in the video driver, VDIS_isr(). This ISR does nothing more
than post the display semaphore which is used by the VDIS_toggleBuffs()
function to wait for new frames.

EXTINT7 is configured to trigger an EDMA event that copies one line of display
data from the current display buffer to the daughter card (FIFO). This line of
video then gets displayed through the TVP3026. The EDMA parameters are
setup to autoincrement to the next line then after a whole frame is displayed,
the parameters reset to the beginning of the buffer again. These EDMA opera-
tions happen at a fairly high rate up to around 40,000 transfers per second and
transfer up to 1600 bytes each so they are submitted at a high priority (see op-
tions field of EDMA parameters).

Note:

Since the display driver depends on DSP/BIOS and interrupts are used, it
is important that the display interrupt service routine VDIS_isr() is configured
into HWI EXTINT6 in the DSP/BIOS configuration tool. Also, the “Use Dis-
patcher” box must be checked. If this is not done, the display interrupt will
never get called and the display semaphore will never get posted.

Triple Buffering Scheme

 2-4

2.3 Triple Buffering Scheme

A triple buffering scheme is used for the display such that the application can
always get a new buffer without waiting, if so desired. It works like this, one
of the buffers is active meaning that the EDMA events are currently moving
data from that buffer to the display hardware. A second buffer is owned by the
application (user), it’s the one your application is currently rendering into. The
third buffer is the next one the application will get upon calling VDIS_toggle-
Buffs(), (intermediate). As you can see, having three buffers allows the ap-
plication to obtain a buffer without waiting for a new frame. If there were only
two buffers, the swap could only occur on frame boundaries which would mean
waiting.

If the application attempts to receive buffers faster than they can be displayed
(60Hz for example) then some frames will be missed. This can happen if you
call VDIS_toggleBuffs(0) which basically gets the next buffer without waiting
for a new one to become available. If you call this faster than the display rate,
then the function will swap between the user buffer and the intermediate buffer
over and over again. Hence, you may end up loosing a frame but no harm is
done.

On the other hand, if the application requests buffers at a rate slower than the
display rate, then some frames will get displayed repeatedly. This is because
the active buffer will only change if the user called VDIS_toggleBuffs() since
the last new frame came in.

Using the Display APIs

2-5Video Display System

2.4 Using the Display APIs

Once the display is opend and configured, the application only has to call
VDIS_toggleBuffs() to obtain a new buffer to render into. This function takes
one argument, timeout that determines how to wait. Possible values are 0, n,
or SYS_FOREVER. If 0 is used, the function will not wait at all and immediately
return the next buffer. If n (an integer value) is used, then the function will wait
for at least that many system ticks (see DSP/BIOS users guide) for a new
frame to become available. Then the next frame is returned regardless if a new
one came in or not. Specifying SYS_FOREVER causes the function to wait
indefinitely for a new frame to arrive. This waiting is done by blocking on a built-
in semaphore, there is no spinning. This semaphore is posted once every ver-
tical sync by the interrupt service routine. If you want your application to be syn-
chronized with the display, use VDIS_toggleBuffs(SYS_FOREVER). If your
application is synchronized some other way (with capture for example), then
use VDIS_toggleBuffs(0).

Note:

Since VDIS_toggleBuffs() blocks on a semaphore, it is important that this
function ONLY be called from the context of a DSP/BIOS task. This means
don’t call this function from main().

Before calling any of the VDIS functions, you must first open the display by call-
ing VDIS_open(). This function performs some internal initialization and allo-
cates system resources, i.e. EDMA channel, semaphore, etc. If your applica-
tion ever finishes with the display, then these resources may be freed up by
calling VDIS_close().

Once the display is opened, it must be configured by calling VDIS_con-
fig(mode) where mode is the desired display mode. Currently, the driver sup-
ports these modes:

� VDIS_640X480X8: 640x480 8-bit greyscale @ 60Hz

� VDIS_640X480X16: 640x480 16-bit color (565 packed format) @ 60Hz

� VDIS_800X600X8: 800x600 8-bit greyscale @ 60Hz

� VDIS_800X600X16: 640x480 16-bit color (565 packed format) @ 60Hz

If you ever wish to disable the display or turn it off, call VDIS_reset(). You may
call VDIS_fill(buffPtr, pixelValue) if you want to fill a buffer with a pixel value.
This function simply uses a CPU for loop to do the fill but does comprehend
the pixel depth. If you call the fill function, note that the cache is not flushed,
this is up to the user.

Using the Display APIs

 2-6

A typical display loop looks something like this:

/* execute from the context of a task */
someTaskFunc() {

 /* open the display */
 if (VDIS_open()) {

 /* configure the display */
 VDIS_config(VDIS_640X480X16);

 /* infinite processing loop */
 while (1) {

 /* get the next available display buffer */
 dispBuff = VDIS_toggleBuffs(SYS_FOREVER);

 /* write data to display buffer */
 dispBuff[] = F(x);
 }
 }
}

Display Buffer Format

2-7Video Display System

2.5 Display Buffer Format

Figure 2–2 illustrates how the individual display buffers are organized. The
buffer is stored continuously in memory such that the start of one line backs
up against the end of the previous line. For 8-bit display modes (as in the fig-
ure), each pixel takes up one byte, for 16-bit modes, 2 bytes are used per pixel.

Figure 2–2. Display Buffer Format

base+0x00000000

base+0x00000280

base+0x00000500

base+0x00000780

base+0x00000A00

base+0x00000C80

base+0x0004AD80

640x480 8-bit greyscale

640 pixels/line

48
0

lin
es

/fr
am

e

1 byte/pixel

VDIS_close

2-8

2.6 Video Display API Reference (VDIS)

Closes display deviceVDIS_close

Function void VDIS_close();

Arguments none

Return Value none

Description This function closes the display device and frees up any resources allocated
during VDIS_open(). The display is also reset.

Generally, this function is never called because video applications are usually
infinite processing loops. Hence, the display is always left open.

Here are the steps taken.

� Check to make sure the display is open
� Call VDIS_reset()
� Close the EDMA channel
� Free the EDMA parameter tables
� Delete the DSP/BIOS semaphore
� Returns

Example VDIS_close();

Configures and enables display hardware for mode specifiedVDIS_config

Function int VDIS_config(
int mode

);

Arguments mode Specifies the video display mode. Supported moodes are:
� VDIS_640X480X8 – 640x480 8bpp greyscale @ 60Hz
� VDIS_640X480X16 – 640x480 16bpp 565 @ 60 Hz
� VDIS_800X600X8 – 800x600 8bpp greyscale @ 60Hz
� VDIS_800X600X16 – 800x600 16bpp 565 @60Hz

Return Value success Returns 0 on failure.

VDIS_fill

2-9 Video Display System

Description This function configures and enables the display hardware for the mode speci-
fied. The display must be opened before calling this function. See
VDSI_open(). Here are the steps taken:

� Check to make sure display is open
� Calls VDIS_reset()
� Updates VDIS_settings structure
� Sets up FPGA timing parameters
� Configures the TVP3026
� Configures the EDMA
� Configures the display interrupt
� Enables everything
� Synchronizes for two frames
� Returns

Example VDIS_config(VDIS_640X480X16);

Fills buffer with specified pixel valueVDIS_fill

Function void VDIS_fill(
void *buff,
Uint32 pixel

);

Arguments buff Pointer to display buffer to fill, usually obtained by a call to
VDIS_toggleBuffs().

pixel The pixel value to fill with. Depends on display mode, for 8 bit
mode, only lower 8-bits are used. For 16-bit mode, lower 16-bits
are used.

Return Value none

Description This function fills a buffer with a specified pixel value. The buffer is assumed
to have the dimensions defined in VDIS_settings. The fill is performed using
a CPU for loop and if the current display mode is 8 bpp, then 8-bit CPU stores
are performed. If 16 bpp, then 16-bit stores are performed. This function in no
way attemps to flush the cache when done with the fill operation. So keep in
mind that after calling VDIS_fill(), some of the fill data may still be sitting in
cache. It is up to the user to flush the cache when appropriate.

VDIS_isr

2-10

Also note that filling a display buffer does not mean it will be displayed right
away. You still have to cycle that buffer until it is active by calls to VDIS_toggle-
Buffs().

Example 1 /* this example will fill a greyscale display with */

/* light grey */

VDIS_open();

VDIS_config(VDIS_640X480X8);

/* to prime up all three display buffers */

for (x=0; x<3; x++) {

 buff = VDIS_toggleBuffs(SYS_FOREVER);

 VDIS_fill(buff,0x80);

}

Example 2 /* this example will fill a color display with */

/* bright blue */

VDIS_open();

VDIS_config(VDIS_640X480X16);

/* to prime up all three display buffers */

for (x=0; x<3; x++) {

 buff = VDIS_toggleBuffs(SYS_FOREVER);

 VDIS_fill(buff,0x001F);

}

Built-in interrupt service routine for display driverVDIS_isr

Function int VDIS_isr();

Arguments none

Return Value none

Description This is the built-in interrupt service routine for the display driver. The user
should never call this function directly. It is exported globally so that it can be
referenced in the interrupt service table.

When using DSP/BIOS, HWI EXTINT6 must be set to call this function and the
“Use Dispatcher” box MUST be checked.

VDIS_reset

2-11 Video Display System

Opens display deviceVDIS_open

Function int VDIS_open();

Arguments none

Return Value success Returns 0 on failure. Failure could happen if required system
resources could not be allocated.

Description This function opens the display device and must be called before calling any
other display APIs. Generally, this function is called only once at the beginning
of your program. VDIS_reset() is called and system resources are allocated.
To free up these resources, call VDIS_close().

Here are the steps taken.

� Check to make sure the display is not already open
� Open EDMA channel
� Allocate EDMA reload parameter tables
� Dynamically create a DSP/BIOS semaphore
� Call VDIS_reset()
� Returns

Example success = VDIS_open();

Resets display hardwareVDIS_reset

Function int VDIS_reset();

Arguments none

Return Value none

Description This function resets the display hardware which in effect turns it off. Here are
the steps taken:

� Check to make sure display is open
� Disables EDMA channel
� Clears all FPGA timing parameters
� Fills all display buffers with 0
� Updates VDIS_settings structure
� Disables and clears the display CPU interrupt
� Returns

Example VDIS_reset();

VDIS_settings

2-12

Global variable exported out of VDIS moduleVDIS_settings

Global Variable extern far VDIS_Settings VDIS_settings;

Members mode Current mode, i.e. VDIS_640X480X16
hres Horizontal resolution in pixels, i.e. 640
vres Vertical resolution in pixels, i.e. 480
bpp Bits per pixel, i.e. 16
pitch Display pitch, number of bytes from start of one line to the start of

the next line, i.e. 640 for 640x480x8
buffsz Total size of one display buffer in bytes
fps Display rate in frames per second, i.e. 60

Description This is a global variable exported out of the VDIS module that contains infor-
mation about the current display mode. Its purpose is to make it easy for the
application code to read this information. It is useful when the application code
needs react differently depending on display settings.

Note: Do not write to any members of this structure, it is intended to be read-
only.

This structured is altered by VDIS_open(), VDIS_config(), and VDIS_reset().
Generally, the user calls VDIS_config() then uses information from this struc-
ture.

Example VDIS_config(VDIS_640X480X16);

dx = VDIS_settings.hres;

dy = VDIS_settings.vres;

Toggles display buffersVDIS_toggleBuffs

Function void *DIS_toggleBufffs(
 int timeout
);

Arguments timeout Specifies how to wait for a new available display buffer.
0 – don’t wait at all
n – wait for n ticks
SYS_FOREVER – wait for ever

Return Value buff Returns a pointer to a free display buffer.

VDIS_toggleBuffs

2-13 Video Display System

Description This function toggles the display buffers and returns a pointer to a free display
buffer. You have a choice of how you want to wait for the new buffer to become
available. Specifying 0 means don’t wait at all. This will return the current avail-
able buffer regardless if a new display event has occured since the last time
you called this function. Specifying a positive integer causes this function to
block on a semaphore for n system ticks until a new display event occurs. If
a new event does not occur by the time n ticks expires, then the most current
free buffer is returned. Specifying SYS_FOREVER causes this function to
block on a semaphore until a event occurs.

The display hardware generates an interrupt on every vertical sync event. The
interrupt service routine posts the display semaphore.

The return value is a pointer a free display buffer. Once you have this pointer,
you are expected to fill the buffer up with display data. You exclusively own this
buffer until you call this function again. At that time, this buffer gets displayed.

This function performs these basic steps:

� Links the EDMA to the next display buffer (intermediate)
� Pends on the display semaphore
� Increments an internal buffer index number
� Returns the new buffer pointer

Example /* execute from the context of a task */

someTaskFunc() {

 /* open the display */

 if (VDIS_open()) {

 /* configure the display */

 VDIS_config(VDIS_640X480X16);

 /* infinite processing loop */

 while (1) {

 /* get the next available display buffer */

 dispBuff = VDIS_toggleBuffs(SYS_FOREVER);

 /* write data to display buffer */

 dispBuff[] = F(x);

 }

 }

}

3-1

Video Capture System

Topic Page

3.1 Capture Block Diagram 3-2.

3.2 Capture Timing and Events 3-3.

3.3 Triple Buffering Scheme 3-4.

3.4 Using the Capture APIs 3-5.

3.5 Capture Buffer Format 3-7.

3.6 Video Capture API Reference (VCAP) 3-9.

Chapter 3

Capture Block Diagram

 3-2

3.1 Capture Block Diagram

Figure 3–1 shows the block diagram of the video capture subsystem. First of
all, three capture buffers are hardwired into the SDRAM of the daughter card
and a triple buffering scheme is used. The daughter card is designed such that
data coming in from the TVP5022 decoder chip is automatically stored in the
daughter card SDRAM at the appropriate location. Software determines which
of the three buffers the capture harwdare stores into.

Figure 3–1. Video Capture Subsystem Block Diagram

Daughter Card

TVP5022 NTSC Input

Video Capture SDRAM

User

Y1

Cb1

Cr1

Y2

Cb2

Cr2

Last Active

Y1

Cb1

Cr1

Y2

Cb2

Cr2

Active

Y1

Cb1

Cr1

Y2

Cb2

Cr2

6711 DSP

E
X

T
IN

T
5

INTSEL

F
ra

m
e

In
te

rr
up

t

EMIF

Capture Timing and Events

3-3Video Capture System

3.2 Capture Timing and Events

One event is tied from the capture subsystem to the DSP. This is EXTINT5 trig-
gered by every other VSYNC (once per frame which is every other field) from
the TVP5022 chip and is configured to generate a CPU interrupt. The interrupt
service routine is defined internal to the driver, VCAP_isr(). This ISR does
nothing more than post the capture semaphore which is used by the
VCAP_getFrame() function to wait for new frames.

The capture buffers are directly mapped into the DSP’s address space as
read-only. This means the CPU or EDMA can directly read these buffers.

Note:

Since the capture driver depends on DSP/BIOS and interrupts are used, it
is important that the capture interrupt service routine VCAP_isr() is config-
ured into HWI EXTINT5 in the DSP/BIOS configuration tool. Also, the “Use
Dispatcher” box must be checked. If this is not done, the capture interrupt will
never get called and the capture semaphore will never get posted.

Triple Buffering Scheme

 3-4

3.3 Triple Buffering Scheme

A triple buffering scheme is used for the capture such that the application can
always get a new buffer without waiting, if so desired. It works like this: one
of the buffers is active, meaning that the capture hardware is currently storing
data into this buffer. A second buffer is owned by the application (user), which
is the one your application is currently reading from. The third buffer is the last
one filled by the capture hardware (last active). Having three buffers allows the
application to obtain a new buffer without waiting for a new frame and the new
buffer always containes the most recent captured data. If there were only two
buffers, the swap could only occur on frame boundaries which would mean
waiting.

If the application attempts to grab buffers faster than they can be captured
(30Hz for example) then duplicate frames will be returned. This can happen
if you call VCAP_getFrame(0) which basically gets the next frame without wait-
ing for a new one to become available. If you call this faster than the capture
rate, then the function will continuously return the same frame until a new one
comes in.

On the other hand, if the application requests buffers at a rate slower than the
capture rate, then some captured frames will get lost (overwritten).

Using the Capture APIs

3-5Video Capture System

3.4 Using the Capture APIs

Once the capture is opend and configured, the application only has to call
VCAP_getFrame() to obtain a new frame of captured data. This function takes
one argument, timeout that determines how to wait. Possible values are 0, n,
or SYS_FOREVER. If 0 is used, the function will not wait at all and immediately
return the next buffer. If n (an integer value) is used, then the function will wait
for at least that many system ticks (see DSP/BIOS users guide) for a new
frame to become available. Then the next frame is returned regardless if a new
one came in or not. Specifying SYS_FOREVER causes the function to wait
indefinitely for a new frame to arrive. This waiting is done by blocking on a built-
in semaphore; there is no spinning. This semaphore is posted once every ver-
tical sync by the interrupt service routine. If you want your application to be syn-
chronized with the capture, use VCAP_getFrame(SYS_FOREVER). If your
application is synchronized some other way (with display for example), then
use VCAP_getFrame(0).

Note:

Since VCAP_getFrame() blocks on a semaphore, it is important that this
function ONLY be called from the context of a DSP/BIOS task. This means
don’t call this function from main().

Before calling any of the VCAP functions, you must first open the capture by
calling VCAP_open(). This function performs some internal initialization and
allocates system resources, i.e. semaphore. If your application ever finishes
with the capture, then these resources may be freed up by calling
VCAP_close().

Once the capture is opened, it must be configured by calling VCAP_con-
fig(mode) where mode is the desired capture mode. Currently, the driver sup-
ports these modes:

� VCAP_NTSC: 640x480 YCbCr 4:2:2 square pixel @ 30 frames/second

� VCAP_PAL : 768x576 YCbCr 4:2:2 square pixel @ 25 frames/second

If you ever wish to disable the capture or turn it off, call VCAP_reset().

Using the Capture APIs

 3-6

A typical capture loop looks something like this:

/* execute from the context of a task */
someTaskFunc() {

 /* open the capture */
 if (VCAP_open()) {

 /* configure the capture */
 VCAP_config(VCAP_NTSC);

 /* infinite processing loop */
 while (1) {

 /* get the next available capture frame */
 input = VCAP_getFrame(SYS_FOREVER);

 /* process the captured data */
 x = F(input);
 }
 }
}

Capture Buffer Format

3-7Video Capture System

3.5 Capture Buffer Format

Figure 3–2 illustrates how the individual capture buffers are organized. There
are three separate buffers used to implement the triple buffering scheme and
each buffer is made up of three components, Y, Cb, and Cr. The component
sub-buffers are not continous. This means there may be gaps between the Y,
Cb, and Cr buffers. Also, there are separate component buffers for the even
and odd fields. All buffer (sub-buffer) addresses are fixed and hardwired. The
figure shows the NTSC buffers but the same thing applies for PAL, just different
dimensions.

When the user calls VCAP_getFrame(), the return value is a pointer to a struc-
ture that has individual members that point to each of the sub-component buff-
ers, for both even and odd fields. It is up to the user to merge these together
if they want the full interlaced frame.

Capture Buffer Format

 3-8

Figure 3–2. Capture Buffer Format

Daughter Card Video Capture SDRAM

Y1

Cb1

Cr1

Y2

Cb2

Cr2

640x240 640x240

320x240 320x240

320x240 320x240

Odd Field Even Field

640x480 NTSC YCbCr 4:2:2

VCAP_config

3-9 Video Capture System

3.6 Video Capture API Reference (VCAP)

Closes capture deviceVCAP_close

Function void VCAP_close();

Arguments none

Return Value none

Description This function closes the capture device and frees up any resources allocated
during VCAP_open(). The capture is also reset.

Generally, this function is never called because video applications are usually
infinite processing loops. Hence, the capture is always left open.

Here are the steps taken.

� Check to make sure the capture is open
� Call VCAP_reset()
� Delete the DSP/BIOS semaphore
� Returns

Example VCAP_close();

Configures and enables capture hardwareVCAP_config

Function int VCAP_config(
int mode,

);

Arguments mode Specifies capture mode. Supported modes are:
� VCAP_NTSC 640x480 YCbCr 4:2:2 square pixel @ 30 fps
� VCAP_PAL 768x576 YCbCr 4:2:2 square pixel @ 25 fps

Return Value success Returns zero on failure.

Description This function configures and enables the capture hardware for the mode spe-
cified.

Example VCAP_config(1);

VCAP_getFrame

3-10

Returns most recent captured frame of video dataVCAP_getFrame

Function VCAP_Frame *VCAP_getFrame(
int timeout

);

Arguments timeout Specifies how to wait for a new frame.
0 – don’t wait at all
n – wait for n ticks
SYS_FOREVER – wait for ever

Return Value frame Returns a frame pointer to the latest captured frame. The frame
object has the following fields.
� void *y1
� void *cr1
� void *cb1
� void *y2
� void *cr2
� void *cb2

Description This function returns the most recent captured frame of video data. You have
a choice of how you want to wait for the new frame. Specifying 0 means don’t
wait at all. This will return the most recent frame captured regardless if a new
frame has arrived since the last time you called this function. Specifying a posi-
tive integer causes this function to block on a semaphore for n system ticks
until a new frame arrives. If a new frame does not arrive by the time n ticks ex-
pires, then the most recent frame is returned. Specifying SYS_FOREVER
causes this function to block on a semaphore until a new frame arrives.

The capture hardware generates an interrupt everytime a new frame arrives.
The interrupt service routine posts the capture semaphore.

The return value is a pointer to a VCAP_Frame object whose members are
pointers to each component of the captured frame.

Example VCAP_Frame input;

…
while (1) {

 input = VCAP_getFrame(SYS_FOREVER);

 …
}

VCAP_reset

3-11 Video Capture System

Built-in interrupt service routine for capture driverVCAP_isr

Function void VCAP_isr();

Arguments none

Return Value none

Description This is the built-in interrupt service routine for the capture driver. The user
should never call this function directly. It is exported globally so that it can be
referenced in the interrupt service table.

When using DSP/BIOS, HWI EXTINT5 must be set to call this function and the
“Use Dispatcher” box MUST be checked.

Opens capture deviceVCAP_open

Function int VCAP_open();

Arguments none

Return Value success Returns 0 on failure. Failure could happen if required system
resources could not be allocated.

Description This function opens the capture device and must be called before calling any
other capture APIs. Generally, this function is called only once at the beginning
of your program. VCAP_reset() is called and system resources are allocated.
To free up these resources, call VCAP_close().

Here are the steps taken.

� Check to make sure the capture is not already open
� Dynamically create a DSP/BIOS semaphore
� Call VCAP_reset()
� Returns

Example success = VCAP_open();

Resets capture hardwareVCAP_reset

Function int VCAP_reset();

Arguments none

Return Value none

VCAP_settings

3-12

Description This function resets the capture hardware which in effect turns it off. Here are
the steps taken:

� Check to make sure capture is open
� Clears all FPGA capture registers
� Disables and clears the capture CPU interrupt
� Updates VCAP_settings
� Returns

Example VCAP_reset();

Display Code at Selected AddressVCAP_settings

Global Variable extern far VCAP_Settings VCAP_settings;

Members mode Current mode, i.e. VCAP_NTSC
hres Horizontal resolution in pixels, i.e. 640
vres Vertical resolution in pixels, i.e. 480
fps Capture rate in frames per second, i.e. 30

Description This is a global variable exported out of the VCAP module that contains infor-
mation about the current capture mode. It’s purpose is to make it easy for the
application code to read this information. It’s useful when the application code
needs react differently depending on capture settings.

Note: Do not write to any members of this structure, it is intended to be read-
only.

This structured is altered by VCAP_open(), VCAP_config(), and VCAP_re-
set(). Generally, the user calls VCAP_config() then uses information from this
structure.

Example VCAP_config(VDIS_NTSC);

dx = VCAP_settings.hres;

dy = VCAP_settings.vres;

4-1

Examples

The examples provided in this section are meant to be illustrative examples
of Video Device Drivers use and do not necessarily provide the most perfor-
mance optimized means of implementing the example scenarios. Please refer
to the TMS320C6000 Imaging Developer’s Kit (IDK) Programmer’s Guide
(Literature number SPRU495) for further information on performance opti-
mized implementations of video capture and display.

All of the examples can assume this for a main function.

/*––*/

void main() {

 /* initialize the CSL library */

 CSL_init();

 /* open a DMA channel for the DAT module */

 DAT_open(DAT_CHAANY, DAT_PRI_LOW, DAT_OPEN_2D);

 /* open up the video systems */

 VDIS_open();

 VCAP_open();

 /* Remember that the main task ’tskMain’ will execute automatically */

 /* once we exit ’main’ and DSP/BIOS starts. */

}

/*––*/

Topic Page

4.1 Draw a Box in 640x480x16 Display Mode 4.1.

4.2 Draw a Box in 640x480x8 Display Mode 4.2.

4.3 NTSC Capture to 640x480x16 Display Loopback 4.3.

4.4 NTSC Capture to 640x480x8 Display Loopback 4.4.

Chapter 4

Draw a Box in 640x480x16 Display Mode

 4-2

4.1 Draw a Box in 640x480x16 Display Mode
/*––*/

void tskMainFunc() {

 Uint16 *d;

 int x,y,dx,dy;

 int frameCnt;

 /* configure the display harwdare */

 VDIS_config(VDIS_640X480X16);

 /* get information about the display settings */

 dx = VDIS_settings.hres;

 dy = VDIS_settings.vres;

 /* let’s go around for three display frames to ensure we */

 /* render all three display buffers */

 for (frameCnt=0; frameCnt<3; frameCnt++) {

 /* grab the next available display buffer */

 d = (Uint16*)VDIS_toggleBuffs(SYS_FOREVER);

 /* fill display with solid color */

 for (y=0; y<dy; y++) {for (x=0; x<dx; x++) {d[dx*y+x] = 0x001F;}}

 CACHE_flush(CACHE_L2ALL,0,0);

 /* draw a box around perimeter of display */

 for (x=0; x<dx; x++) d[dx*0+x] = 0xF800; /* top */

 for (x=0; x<dx; x++) d[dx*(dy–1)+x] = 0xF800; /* bottom */

 for (y=0; y<dy; y++) d[dx*y+0] = 0xF800; /* left */

 for (y=0; y<dy; y++) d[dx*y+(dx–1)] = 0xF800; /* right */

 CACHE_flush(CACHE_L2ALL,0,0);

 }

 /* loop forever */

 while (1) {

 VDIS_toggleBuffs(SYS_FOREVER);

 }

}

/*––*/

Draw a Box in 640x480x8 Display Mode

4-3Examples

4.2 Draw a Box in 640x480x8 Display Mode
/*––*/

void tskMainFunc() {

 Uint8 *d;

 int x,y,dx,dy;

 int frameCnt;

 /* configure the display harwdare */

 VDIS_config(VDIS_640X480X8);

 /* get information about the display settings */

 dx = VDIS_settings.hres;

 dy = VDIS_settings.vres;

 /* let’s go around for three display frames to ensure we */

 /* render all three display buffers */

 for (frameCnt=0; frameCnt<3; frameCnt++) {

 /* grab the next available display buffer */

 d = (Uint8*)VDIS_toggleBuffs(SYS_FOREVER);

 /* fill display with solid color */

 for (y=0; y<dy; y++) {for (x=0; x<dx; x++) {d[dx*y+x] = 0x80;}}

 CACHE_flush(CACHE_L2ALL,0,0);

 /* draw a box around perimeter of display */

 for (x=0; x<dx; x++) d[dx*0+x] = 0xFF; /* top */

 for (x=0; x<dx; x++) d[dx*(dy–1)+x] = 0xFF; /* bottom */

 for (y=0; y<dy; y++) d[dx*y+0] = 0xFF; /* left */

 for (y=0; y<dy; y++) d[dx*y+(dx–1)] = 0xFF; /* right */

 CACHE_flush(CACHE_L2ALL,0,0);

 }

 /* loop forever */

 while (1) {

 VDIS_toggleBuffs(SYS_FOREVER);

 }

}

/*––*/

NTSC Capture to 640x480x16 Display Loopback

 4-4

4.3 NTSC Capture to 640x480x16 Display Loopback
/*––*/

void tskMainFunc() {

 VCAP_Frame *input;

 Uint16 *output;

 int frameCnt,line;

 int ddx,ddy,cdx,cdy;

 Uint8 *y1,*cr1,*cb1,*y2,*cr2,*cb2;

 VDIS_config(VDIS_640X480X16);

 VCAP_config(VCAP_NTSC);

 ddx = VDIS_settings.hres;

 ddy = VDIS_settings.vres;

 cdx = VCAP_settings.hres;

 cdy = VCAP_settings.vres;

 /* loop forever */

 while (1) {

 /* get video buffers */

 input = VCAP_getFrame(SYS_FOREVER); /* synchronize to the capture system
*/

 output = (Uint16*)VDIS_toggleBuffs(0);

 y1 = (Uint8*)(input–>y1);

 cr1 = (Uint8*)(input–>cr1);

 cb1 = (Uint8*)(input–>cb1);

 y2 = (Uint8*)(input–>y2);

 cr2 = (Uint8*)(input–>cr2);

 cb2 = (Uint8*)(input–>cb2);

 /* grab frame */

 for (line=0; line<(cdy/2); line++) {

 /* copy odd field over to working buffer */

 DAT_copy(&y1[cdx*line], &yBuff[2*cdx*line], cdx);

 DAT_copy(&cr1[cdx*line/2], &crBuff[cdx*line], cdx/2);

 DAT_copy(&cb1[cdx*line/2], &cbBuff[cdx*line], cdx/2);

NTSC Capture to 640x480x16 Display Loopback

4-5Examples

 /* copy even field over to working buffer */

 DAT_copy(&y2[cdx*line], &yBuff[2*cdx*line+cdx], cdx);

 DAT_copy(&cr2[cdx*line/2], &crBuff[cdx*line+cdx/2], cdx/2);

 DAT_copy(&cb2[cdx*line/2], &cbBuff[cdx*line+cdx/2], cdx/2);

 }

 DAT_wait(DAT_XFRID_WAITALL);

 /* do color space conversion */

 for (line=0; line<(cdy–3); line++) {

 ycbcr422pl_to_rgb565_asm(

 coeffs,

 &yBuff[cdx*line],

 &crBuff[(cdx/2)*line],

 &cbBuff[(cdx/2)*line],

 &output[ddx*(ddy–cdy)/2+(ddx–cdx)/2+ddx*line],

 cdx

);

 }

 /* flush the cache */

 CACHE_flush(CACHE_L2ALL,0,0);

 }

}

/*––*/

NTSC Capture to 640x480x8 Display Loopback

 4-6

4.4 NTSC Capture to 640x480x8 Display Loopback
/*––*/

void tskMainFunc() {

 VCAP_Frame *input;

 Uint8 *output;

 int frameCnt,line;

 int ddx,ddy,cdx,cdy;

 Uint8 *y1,*y2;

 VDIS_config(VDIS_640X480X8);

 VCAP_config(VCAP_NTSC);

 ddx = VDIS_settings.hres;

 ddy = VDIS_settings.vres;

 cdx = VCAP_settings.hres;

 cdy = VCAP_settings.vres;

 /* loop forever */

 while (1) {

 /* get video buffers */

 input = VCAP_getFrame(SYS_FOREVER);

 output = (Uint8*)VDIS_toggleBuffs(0);

 y1 = (Uint8*)(input–>y1);

 y2 = (Uint8*)(input–>y2);

 /* grab frame */

 for (line=0; line<(cdy/2); line++) {

 /* copy odd field, Y only */

 DAT_copy(&y1[cdx*line], &yBuff[2*cdx*line], cdx);

 /* copy even field, Y only */

 DAT_copy(&y2[cdx*line], &yBuff[2*cdx*line+cdx], cdx);

 }

 DAT_wait(DAT_XFRID_WAITALL);

 /* copy Y data to output display buffer */

NTSC Capture to 640x480x8 Display Loopback

4-7Examples

 for (line=0; line<cdy–3; line++) {

 DAT_copy(&yBuff[cdx*line], &output[ddx*(ddy–cdy)/2+(ddx–cdx)/2+ddx*line],
cdx);

 }

 DAT_wait(DAT_XFRID_WAITALL);

 /* flush the cache */

 CACHE_flush(CACHE_L2ALL,0,0);

 }

}

/*––*/

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Related Documentation From Texas Instruments
	Text Conventions

	Contents
	Figures
	Overview
	Software Module Block Diagram
	Using the Driver Library
	Software Architecture

	Video Display System
	Display Block Diagram
	Display Timing and Events
	Triple Buffering Scheme
	Using the Display APIs
	Display Buffer Format
	Video Display API Reference (VDIS)
	VDIS_close
	VDIS_fill
	VDIS_isr
	VDIS_reset
	VDIS_settings
	VDIS_toggleBuffs

	Video Capture System
	Capture Block Diagram
	Capture Timing and Events
	Triple Buffering Scheme
	Using the Capture APIs
	Capture Buffer Format
	Video Capture API Reference (VCAP)
	VCAP_config
	VCAP_getFrame
	VCAP_reset
	VCAP_settings

	Examples
	Draw a Box in 640x480x16 Display Mode
	Draw a Box in 640x480x8 Display Mode
	NTSC Capture to 640x480x16 Display Loopback
	NTSC Capture to 640x480x8 Display Loopback

