
TMS320C6000 Imaging Developer’s Kit
(IDK)

Programmer’s Guide

Literature Number: SPRU495A
September 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

The IDK Programmer’s Guide is intended for programmers and application de-
velopers who want to develop new applications to extend the capability of the
IDK that are eXpressDSP-compliant. The programmer’s guide is also in-
tended to ease the learning curve associated with understanding how devel-
opers can leverage the different software tools that are provided along with the
IDK. In addition the programmer’s guide discusses several generic templates,
in the form of application drivers that are used in most common image process-
ing tasks, which can be re-used.

How to Use This Manual

This document contains the following chapters:

� Chapter 1 – Introduction, provides a basic overview of the Program-
mer’s Guide.

� Chapter 2 – Image Data Manager, describes the image data manager
utility.

� Chapter 3 – Development of Application Drivers as Generic Tem-
plates for Image Processing, describes the use of Image Data Manager
routines to develop generic templates in the form of application level driv-
ers.

� Chapter 4 – Application Development and Prototyping Using Gener-
ic Templates, desribes the use of generic templates to aid users in initial
application development and prototyping.

� Chapter 6 – Integration of an Application into the Imaging Frame-
work, describes integrating an application into the imaging framework.

� Chapter 7 – Conclusions, summarizes the concepts discussed in the
programer’s guide.

Related Documentation From Texas Instruments

iv

Related Documentation From Texas Instruments

The following references are provided for further information:

Documentation

TMS320C6000 Imaging Developer’s Kit (IDK) User’s Guide (Literature
number SPRU494)

TMS320C6000 Imaging Developer’s Kit (IDK) Video Device Driver User’s
Guide (Literature number SPRU499)

C6000 JPEG Information:

� TMS320C6000 JPEG Implementation Application Report (Literature
number SPRA704)

� Optimizing JPEG on the TMS320C6211 With 2-Level Cache Application
Report (Literature number SPRA705)

C6000 H.263 Information:

� H.263 Decoder: TMS320C6000 Implementation Application Report
(Literature number SPRA703)

� H.263 Encoder: TMS320C6000 Implementation Application Report
(Literature number SPRA721)

Text Conventions

The following typographical conventions are used in this specification:

� Text inside back-quotes (‘‘) represents pseudo-code

� Program source code, function and macro names, parameters, and com-
mand line commands are shown in a mono-spaced font.

Text Conventions

Contents

v

Contents

1 Introduction 1-1.
1.1 IDK as a Rapid Prototyping Platform 1-2.

1.1.1 Rapid Prototyping Software Suite 1-2.
1.1.2 Rapid Prototyping Hardware 1-3.

1.2 IDK Documentation from a Programmer’s Perspective 1-4.
1.3 Overview of the Programmer’s Guide 1-6.

2 Image Data Manager (IDM) 2-1.
2.1 Software Architecture for the IDK 2-2.
2.2 Conceptual Details of Image Data Manager (IDM) Implementation 2-4.

2.2.1 Double Buffering 2-4.
2.2.2 Sliding Window Mechanism 2-6.
2.2.3 Data Transfers that Image Data Manager Does Not Support 2-8.

2.3 Image Data Manager API Documentation 2-9.
2.4 Programming Model for the Image Data Manager 2-15.
2.5 Conclusions 2-16.

3 Development of Application Drivers as Generic Templates for Image Processing 3-1. . . .
3.1 Imaging TDK Hardware 3-2.
3.2 Video Capture 3-4.
3.3 Video Display 3-7.
3.4 Application Drivers for Gray Scale Processing 3-9.

3.4.1 Gray Scale Driver 3-9.
3.4.2 Gray Scale Application Driver for Odd-Even Field Based Processing 3-13.
3.4.3 DSP Loading for Gray Scale Application Drivers 3-17.

3.5 Development of Color Application Drivers 3-18.
3.5.1 Color Application Driver for Progressive Order Using EDMAs to Merge

Even/Odd Fields 3-18.
3.5.2 Color Application Drivers for Progressive Order with DSP Doing

Even/Odd Field Merge 3-21.
3.5.3 Color Application Drivers for Odd/Even Field Based Processing 3-23.

3.6 DSP Loading for Color Application Drivers 3-26.
3.7 Conclusions 3-27.

Contents

vi

4 Application Development and Prototyping Using Generic Templates 4-1.
4.1 Recommended Application Development Flow for IDK 4-2.
4.2 Development of the Non-Linear Median Filtering Algorithm 4-3.

4.2.1 Problem Statement 4-3.
4.2.2 Use of ImageLIB in Developing an Application 4-3.
4.2.3 Using IDM to Implement Data Flow for Algorithm 4-4.
4.2.4 Using Generic Templates to Feed Algorithm with Image Data 4-6.
4.2.5 Putting the Modules Together for Initial Testing 4-8.

4.3 Development of Color Plane Rotation Algorithm 4-11.
4.3.1 Problem Definition 4-11.

4.4 Conclusions 4-14.

5 Image Processing Using ImageLIB 5-1.
5.1 Problem Definition 5-2.

5.1.1 Use of ImageLIB Components 5-3.
5.2 Use of Image Data Manager to Manage Data Flow for ImageLIB Components 5-6.

5.2.1 API interface for Image Processing Algorithms 5-10.
5.3 Modifying the Application Driver for the Algorithm 5-15.
5.4 Algorithm Integration for Initial Testing 5-18.
5.5 Performance Considerations 5-23.
5.6 Conclusions 5-26.

6 Integration of an Application into the Imaging Framework 6-1.
6.1 Overview 6-2.
6.2 Channel Manager (CM) Overview 6-4.
6.3 Verify eXpressDSP Compliance of Rules and Guidelines 6-6.
6.4 Create eXpressDSP Interfaces 6-7.

6.4.1 eXpressDSP Template Tool 6-7.
6.4.2 Modify eXpressDSP Template Tool Output Files 6-9.

7 Conclusions 7-1.
7.1 Review of Programmer’s Guide 7-2.

Figures

viiContents

Figures

2–1 Software Architecture Hierarchy of Components 2-2.
2–2 Image Data Manager Buffer Requirements for Simple Double Buffering 2-5.
2–3 Transfer of Multiple Non-Contiguous Lines in External Memory 2-5.
2–4 Progression of Events in Internal Memory For Sliding Window Mechanism 2-7.
2–5 Progression of Events in Internal Memory for Sliding Window 2-7.
2–6 Steps Involved in Creating and Using Image Streams 2-15.
3–1 Imaging TDK Daughtercard Block Diagram 3-3.
3–2 Data Flow For Gray Scale Driver with Progressive Order 3-10.
3–3 Data Flow for Field-Based Processing-Based Application Driver 3-14.
4–1 Recommended Algorithm Development Flow for IDK 4-2.
5–1 Image Processing Demonstration 5-2.
5–2 Image Processing Demonstration Display 5-3.
5–3 ImageLIB Code for corr_3x3 Kernel 5-4.
5–4 Structuring Algorithms to Accomplish Image Processing Demonstration 5-10.
6–1 Recommended Algorithm Development Flow for IDK 6-3.
6–2 IDK Channel Manager Framework 6-4.

Tables

viii

Tables

2–1 Data Flow in a 3x3 Convolution Algorithm 2-6.
2–2 Relation of Pointers to Lines in Sliding Window 2-6.
3–1 Video Capture Memory Requirements 3-4.
3–2 Capture Events 3-6.
3–3 Display Events 3-7.
5–1 Comparison of Performance Obtained with Theoretical Performance 5-24.
6–1 User Inputs to eXpressDSP Template Code Generator 6-7.
6–2 List of Files Generated by eXpressDSP Template Code Generator 6-8.

1-1

Introduction

The IDK Programmer’s Guide is intended for programmers and application de-
velopers who want to develop new applications to extend the capability of the
IDK that are eXpressDSP-compliant. The programmer’s guide is also in-
tended to ease the learning curve associated with understanding how devel-
opers can leverage the different software tools that are provided along with the
IDK. In addition the programmer’s guide discusses several generic templates,
in the form of application drivers that are used in most common image process-
ing tasks, which can be re-used. The re-use of such application drivers to de-
velop new image processing algorithms is demonstrated. The IDK stresses
the concept of developing algorithms under an eXpressDSP-compliant frame-
work. The creation of new algorithms that are eXpressDSP-compliant facili-
tates their integration into the framework under a Channel Manager that
creates, runs and deletes multiple instances of different algorithms. In addition
the framework allows users to dynamically vary the parameters of the algo-
rithm at run-time. The examples developed for initial testing are integrated into
the framework to demonstrate to users how they can plug their algorithms into
the Channel Manager framework. The examples shown in the programmer’s
guide are intended to represent the data flow found in typical image processing
algorithms. While it is impossible to conceive of all the possible data flow situa-
tions required for image processing algorithms, a careful study of the exam-
ples covered in this guide by the user, should help users in the development
of new applications.

Topic Page

1.1 IDK as a Rapid Prototyping Platform 1-2.

1.2 IDK Documentation from a Programmer’s Perspective 1-4.

1.3 Overview of the Programmer’s Guide 1-6.

Chapter 1

IDK as a Rapid Prototyping Platform

 1-2

1.1 IDK as a Rapid Prototyping Platform

In addition to showcasing the included demonstrations, the IDK also serves
as a rapid prototyping platform for the development of image and video proc-
essing algorithms. Using the software and hardware components provided in
the IDK, developers can quickly move from conceptualizing algorithms to high
performance working implementations on TMS320C6000 DSP board, with
live video input and output to evaluate their algorithms. This rapid prototyping
ability is based on the following developments included in the IDK:

1.1.1 Rapid Prototyping Software Suite

The Rapid Prototyping Software Suite consists of the following software pack-
ages: ImageLIB, Chip Support Library (CSL), and Image Data Manager.

ImageLIB: This is an optimized Image/Video Processing Functions Library for
C programmers on TMS320C6000 devices. It includes many C-callable, as-
sembly-optimized, general-purpose image/video processing routines. These
routines are typically used in computationally intensive real-time applications
where optimal execution speed is critical. ImageLIB offers the following advan-
tages to software developers:

� By using the routines provided in ImageLIB, an application can achieve
execution speeds that are considerably faster than equivalent code writ-
ten in standard ANSI C language.

� By providing ready-to-use DSP functions, ImageLIB can significantly
shorten image/video processing application development time.

ImageLIB software and associated documentation is available at:

http://www.ti.com

Chip Support Library (CSL): CSL is a set of Application Programming Inter-
faces (APIs) used to configure and control all on-chip peripherals. It is intended
to make software development easier in getting algorithms operational in a
system. The goal of this library is ease of peripheral use, some level of compat-
ibility between devices, shortened development time, code portability, some
standardization, and hardware abstraction. CSL offers the following advan-
tages to software developers:

� Enables development of DSP application code without having to physical-
ly program the registers of peripherals. This helps to make the program-
ming task easier, quicker, and also there is less potential for mistakes.

� The availability of CSL for all C6000 devices allows an application to be
developed once and run on any member of the TMS320C6000 DSP fami-
ly.

IDK as a Rapid Prototyping Platform

1-3Introduction

� The ability to develop new libraries that use CSL as their foundation to al-
low for easy data transfers. An example of this is the Image Data Manager
Utilities (described below) that use CSL to abstract the details of double
buffering in DMAs.

CSL software and associated documentation is available at:

http://www.ti.com

Image Data Manager (IDM): Image Data Manager is a set of library routines
that offer abstraction for double buffering of DMA requests, to efficiently move
data in the background during processing. They have been developed to help
remove the burden from the user of having to perform pointer updates and
managing buffers in the code. IDM uses CSL calls to move data back and forth
between external and internal memory during the course of processing. IDM
utilities offer the following advantages to software developers:

� The ability to separate and compartmentalize data transfers from the algo-
rithm, leading to software that is easy to understand and simple to main-
tain.

� The ability to provide data abstraction routines to perform efficient DMA
transfer.

1.1.2 Rapid Prototyping Hardware

The IDK hardware consists of a C6711 DSK and a daughtercard that provides
the following capabilities:

� Video Capture of NTSC/PAL signals (composite video).

� Display of RGB signals, 640x480 or 800x600 resolution, 16 bits per pixel
(565 format).

� Video data formatting by an on-board FPGA to convert captured inter-
leaved 4:2:2 data to separate Y, Cr, Cb components that may be sent to
the DSP for processing.

� Video capture and display drivers software written using DSP/BIOS and
CSL.

This enables users to quickly setup a development environment that includes
video input and output capability.

IDK Documentation from a Programmer’s Perspective

 1-4

1.2 IDK Documentation from a Programmer’s Perspective

The programmer’s guide is an application of several key software and hard-
ware components that are discussed in complete detail in the IDK documenta-
tion. The programmer’s guide is not intended to replace these documents.
Rather it is intended to be an application of all the software and hardware
technologies discussed in the following documents. As part of discussing all
the documents, the concepts that a programmer/developer is expected to gain
are elaborated. Understanding these key concepts is essential to appreciating
the ease of use that they bring to the development of several examples in-
cluded as part of the programmer’s guide

The IDK consists of the following pieces of documentation:

� TMS320C6000 IDK Users’ Guide

This guide details the software and hardware architecture of the Imaging
Developer’s Kit. The software architecture includes at the highest level the
IDK Framework (Channel Manager), followed by the Image Processing al-
gorithms using ImageLIB or custom kernels developed by the user at the
next level, followed by the use of Image Data Manager and CSL at the low-
est level to provide the algorithm with the data it requires. It is important for
users to understand the software architecture of the IDK. The hardware
architecture for the IDK is also documented in this guide. It would be worth-
while for users to familiarize themselves with the hardware capabilities of
the IDK.

This guide also provides users with all the information regarding the cap-
ture and display drivers that were created to form the library “vcard.lib”.
This library provides users abstraction from the underlying hardware. It
lets users configure by setting/resetting the capture and display hardware
to meet their requirements. The device drivers developed as part of the
library are modified later to generate application drivers.

While the video card library vcard.lib provides the abstraction of the hard-
ware from the users, a study of the IDK hardware platform details can al-
ways be useful to understand the capabilities of the system, the underlying
structure of the pixels, and how they are organized. The application drivers
developed as examples later on in this document exploit the structure of
the image on the hardware being organized as even and odd fields in sep-
arate regions in memory.

Users are strongly urged to develop their new algorithms under an
eXpressDSP-compliant framework, that allows for the seamless integra-
tion of multiple algorithms. This application report demonstrates how the
Imaging Framework can be used to create, run, delete and modify several

IDK Documentation from a Programmer’s Perspective

1-5Introduction

instances of algorithms. It demonstrates a powerful software paradigm
that eXpressDSP-compliant algorithms can leverage. Programmers are
strongly urged to familiarize themselves with the APIs required to interface
with the Imaging Framework.

� IDK Programmer’s Guide

This document is intended to demonstrate the software and hardware
components of the IDK to develop generic templates, in the form of exam-
ples that decrease the learning curve of the developer in extending the ca-
pabilities of the IDK.

� JPEG and H.263 Application Notes

As part of the IDK demonstrations, a JPEG encoder and decoder demon-
stration and a multi channel H.263 decoder demonstration are included.
The IDK also includes a H.263 loopback demonstration. These application
notes detail all the optimization techniques and organization of the soft-
ware in both these algorithms. The discussion of the techniques used is
intended to aid developers in adopting similar techniques in developing
image processing algorithms that conform to standards.

Overview of the Programmer’s Guide

 1-6

1.3 Overview of the Programmer’s Guide

This section provides the users with an overview of the programmer’s guide.
The programmer’s guide is divided into the following chapters.

� Chapter 2: Image Data Manager

The Image Data Manager uses the DAT calls in CSL to provide users with
an abstraction for double- buffered DMA’s to bring the data required by the
algorithm in the background, without impacting the processing of the DSP.
The Image Data Manager routines help to relieve the burden of having to
maintain the double buffering information. It isolates all the code pertain-
ing to the management of double buffering to one file. The use of Image
Data Manager results in code that is easy to maintain and understand. It
also helps to restrict any errors associated with double buffering to a single
file, allowing for code to be easily debugged and maintained. This chapter
discusses the APIs for all the different functions that from a part of the
Image Data Manager.

� Chapter 3: Development of Application Drivers as Generic Templates for
Image Processing

This chapter makes use of the Image Data Manager routines discussed in
the earlier chapter to develop generic templates for image processing in
the form of application drivers. The use of the Image Data Manager func-
tions, to develop application drivers for grayscale and color image proc-
essing are developed in this chapter. The performance of such application
drivers is also discussed in this chapter.

� Chapter 4: Application Development and Prototyping Using Generic Tem-
plates

This chapter makes use of the generic templates developed in the pre-
vious chapter, to perform initial development and prototyping of the ap-
plication. This is demonstrated by leveraging the application drivers to de-
velop a grayscale and a color demonstration. The examples that are de-
veloped in this chapter are not as complicated as JPEG or H.263, but are
intended to demonstrate the use of the application drivers as generic tem-
plates to aid in developing applications.

� Chapter 5: Image Processing Using the TMS320C62x ImageLIB

This chapter explains how users can leverage the power of the
TMS320C62x ImageLIB, a collection of highly optimized C callable image
kernels, to accomplish imaging algorithms. These optimized kernels have
a wrapper function that brings in the data required for the kernel by calls to
the image data manager.

Overview of the Programmer’s Guide

1-7Introduction

Trade-offs that the user can perform to improve the performance obtained
for performing the algorithm on the entire image are also discussed. The
image processing demo makes use of functions from ImageLIB and
adapts a generic template application driver to assemble an initial version
of an image processing demonstration.

� Chapter 6: Integration of an Application into the Imaging Framework

This chapter explains how users can take a prototyped application and
convert it to be eXpressDSP-compliant In addition it demonstrates how
users may integrate this application into the Imaging Framework, so that
the present application can co-exist with several other applications. In
addition the integration of the application into the Imaging Framework al-
lows applications to be created, executed, deleted and modified during
run-time. This allows for multichannel implementations of the algorithm, or
multiple algorithms to run together side by side. The integration of voice
processing and image processing algorithms was used for putting togeth-
er the demonstration scenarios used in the IDK.

� Chapter 7: Conclusions

This chapter summarizes the key concepts and techniques that software
developers can leverage to build new applications on the IDK. Develop-
ment of applications under that are eXpressDSP-compliant is essential in
order for applications to be robust and maintain inter-operability with ap-
plications developed by others. The ability to run the developed applica-
tion in an Imaging Framework to either create multiple instances of the
same algorithm or the ability to run multiple algorithms simultaneously are
attractive attributes.

2-1

Image Data Manager (IDM)

The Image Data Manager utility is used to provide an abstraction for double-
buffered DMA routines that programmers can use to move the data required
for the algorithm efficiently in the background. This is done using the DMA con-
troller in the background, while the DSP can continue working away on the
data fetched in the previous iteration. The Image Data Manager was built using
the CSL DAT routines. CSL stands for Chip Specific Library which in turn was
provided to give a standard re-usable set of software routines and provide ab-
straction from the device hardware. This allows users to develop their applica-
tion once and port it easily to other C6x devices. The Image Data Manager pro-
vides a set of APIs that allow a user to associate a “data stream” with a region
of external memory from which data is to be fetched into a region of internal
memory, or vice-versa. The direction of the stream decides whether the data
is brought into internal memory (get) or sent out from internal memory (put).
The Image Data Manager starts to manage the data required for the given ap-
plication providing the user the pointer to the currently ready buffer of data if
the stream is initialized in the input direction, or a pointer to write to if the stream
is initialized in the output direction, once stream initialization is completed. The
APIs restrict all the DMA management code that is typically written along with
the entire application to be localized to one file. This allows for the code to be
easily maintained and debugged. In addition it lets the user focus on the details
of the underlying algorithm as opposed to having to explicitly include double
buffering in the code.

The Image Data Manager is used to develop the generic template routines in-
cluded in the programmer’s guide in the form of application level drivers, that
users can deploy or modify for developing new algorithms.

Topic Page

2.1 Software Architecture for the IDK 2-2.

2.2 Conceptual Details of Image Data Manager (IDM) Implementation 2-4.

2.3 Image Data Manager API Documentation 2-9.

2.4 Program Model for the Image Data Manager 2-15.

2.5 Conclusions 2-16.

Chapter 2

Software Architecture for the IDK

 2-2

2.1 Software Architecture for the IDK

It is important to understand how Image Data Manager interacts with the vari-
ous components that form the software architecture for the IDK. Figure 2–1
shows the hierarchy of components.

Figure 2–1. Software Architecture Hierarchy of Components

eXpressDSP API wrapper

Algorithm

Image processing functions

ImageLIB or custom kernels

Image data manager

CSL

eXpressDSP API wrapper

Algorithm

Image processing functions

ImageLIB or custom kernels

Image data manager

CSL

Channel manager framework

Hardware

The different layers of the software architecture and their interaction with the
Channel Manager framework and hardware is shown. Figure 2–1 not only de-
tails all the different software layers, but also shows how several applications
developed with this software architecture in mind eventually integrate into the
Channel Manager framework. The software architecture is comprised of six
different layers. The following are the levels of the software architecture from
the top to the bottom:

� The top-most layer of this hierarchical architecture is the eXpressDSP
API Wrapper. This is the interface available to other algorithms or users
of the eXpressDSP-compliant algorithm.

� The next layer is the actual Algorithm. It typically invokes one or more
Image Processing Functions. The ordering of the functions, and data
passing between the functions is controlled by the standard algorithm.

Software Architecture for the IDK

2-3Image Data Manager (IDM)

� An Image Processing Function is a “wrapper” around one or more Imag-
ing Kernels, and is responsible for managing data I/O for the kernels.

� ImageLIB or Custom Kernels are the core processing operations. Typi-
cally, they are DSP code that has been highly optimized for performance.
Many of these kernels are contained in the TI ImageLIB software, while
others are custom software for specific applications.

� Image Data Manager (IDM) is a set of library routines that offer abstrac-
tion for double buffering of DMA requests, to efficiently move data in the
background during processing. They have been developed to help re-
move the burden from the user of having to perform pointer updates in the
code. DSTREAM functions use CSL DAT calls to move data between ex-
ternal and internal memory during the course of processing.

� Chip Support Library (CSL) provides the users with a key set of routines
that provide the user with abstraction from the target hardware. This al-
lows users to specify the target hardware and re-use their software by le-
veraging the power of CSL. The fact that there is a particular flavor of CSL
for every C6000 device, and in future every C5000 device, encourages
programmers to use it for application development from a software re-us-
ability perspective.

Conceptual Details of Image Data Manager (IDM) Implementation

 2-4

2.2 Conceptual Details of Image Data Manager (IDM) Implementation

It is important for users to understand how Image Data Manager automatically
manages the buffers in internal memory, providing the users the current set of
active buffers for the input and output image streams. This section deals with
the conceptual aspect without getting into the details of the underlying APIs.

There are two different access modes required by most image processing al-
gorithms:

� Double Buffering

� Sliding Window

Every useful image processing application requires at least two image
streams, one on the input side and one on the output side. This does not ac-
count for the class of image processing algorithms that perform in-place trans-
forms like DCTs. Image Data Manager expects the inputs and outputs to be
in a separate buffer and as such does not support in place transformations,
unless the internal memory regions are aliased.

Image Data Manager however supports both the mechanisms of data transfer
shown for input streams. The output stream supports the double buffering
mode only. These data transfer mechanisms and how Image Data Manager
supports them are specified in the sub-sections under this section. Program-
mers should take time to understand the details of the buffer requirements in
different scenarios, so that they can set up image data streams for different
conditions as their application may require.

2.2.1 Double Buffering

Image Data Manager provides for double buffering on input and output
streams. Let us consider that a given image in external memory of size “PK”
lines is to be processed “K” pixels at a time, where each line has a width of “K”
pixels. It can be seen that to process the entire image would require P such
iterations. Image Data Manager expects a contiguous region of internal
memory of size 2K lines.

Conceptual Details of Image Data Manager (IDM) Implementation

2-5Image Data Manager (IDM)

Figure 2–2. Image Data Manager Buffer Requirements for Simple Double Buffering

P
lines

K pixels

K pixels

K pixels

External memory

Image data
manager
control

Internal memory

The buffering requirements that the Image Data Manager requires for this
case are shown in Figure 2–2. The internal memory that needs to be allocated
for the algorithm should be a contiguous region of size 2K pixels. The IDM con-
trols by multiplexing between the two contiguous regions of K pixels, on a ping-
pong basis. In the case shown K pixels form one line of the output image, how-
ever it is conceivable that the user may want to work on multiple output lines
at a given time. In addition these lines may be contiguous in external memory,
or may be spaced apart by a fixed offset. The latter is the case if the lines of
the even field are processed first followed by the lines of the odd field. In addi-
tion there may be cases where each input line that is fetched from external
memory is separated by a fixed offset. Although the data to be fetched from
external memory may be sperated by a fixed offset, Image Data Manager al-
ways brings data into internal memory so that all lines in the internal memory
are contiguous.

Whenever multiple lines are to be fetched on every iteration, with an arbitrary
but fixed offset between the individual lines, Image Data Manager makes use
of the DAT_2D routines and hence performs a 2D transfer. If the multiple lines
are contiguous in external memory, then both the DAT 1D call and DAT_2D call
from CSL can be used. In this situation it is preferable to use the 1D DAT call
from a speed perspective as it is likely to complete sooner. The situation where
each of the lines to be fetched is separated by an offset is shown in Figure 2–3.
In any case the internal memory needs to be twice as large as the amount
transferred on every iteration.

Figure 2–3. Transfer of Multiple Non-Contiguous Lines in External Memory

ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ

External memory Internal memory

Conceptual Details of Image Data Manager (IDM) Implementation

 2-6

The Image Data Manager (IDM) returns to the user the current ready region
that can be used for processing. The double buffering mechanism is often
used on the output side, to commit back results to external memory. Most com-
mon image processing tasks, require context in the form of not only the present
line being processed but also the surrounding lines above and below the cur-
rent line. This leads to the sliding window mechanism discussed in the next
section.

2.2.2 Sliding Window Mechanism

The sliding window mechanism is best illustrated by a 3x3 convolution algo-
rithm. The following table shows the set of input lines (in_line_x) that are re-
quired to produce one output line (out_line_y). The first few iterations of this
algorithm are traced to represent the data flow required by this algorithm.

Table 2–1. Data Flow in a 3x3 Convolution Algorithm

Iteration
Number Input Lines Required Output Line Produced

1 in_line_ 0, in_line_1, in_line_2 out_line_o

2 in_line_1, in_line_2, in_line_3 out_line_1

3 in_line_2, in_line_3, in_line_4 out_line_2

4 in_line_3, in_line_4, in_line_5 out_line_3

The data flow shown in Table 2–1, is a sliding window mechanism, in which the
oldest line is dropped. It can be seen that every iteration of the algorithm re-
quires three lines. The three lines are composed of two lines from the previous
iteration and 1 new line that has been fetched for the current iteration.

Sliding window mechanism of bringing in data is supported by IDM for input
streams only. The output stream supports only the double buffered mode. The
pointer to the current buffer returned by IDM always points to a contiguous re-
gion of memory. This allows all the pointer information required for algorithms
to be computed using the current pointer curr_ptr and the width of the line
x_dim.

Table 2–2. Relation of Pointers to Lines in Sliding Window

Pointer to First Line Pointer to Second Line Pointer to Third Line

curr_ptr curr_ptr + x_dim curr_ptr + (2 *x_dim)

Conceptual Details of Image Data Manager (IDM) Implementation

2-7Image Data Manager (IDM)

The fact that the curr_ptr points to a contiguous region of internal memory, is
beneficial to the user in that an array of pointers need not be passed. In addi-
tion the explicit relationship of the line number to the pointer for that line, is also
beneficial to optimizing compilers as it provides them the freedom to re-order
the load instructions. The internal memory is expected to be twice as large as
the quantum of data being fetched, in this case it needs to hold up to six lines
of the input image. The sequence in which this six line buffer is filled by the IDM
is illustrated by Figure 2–4.

Figure 2–4. Progression of Events in Internal Memory For Sliding Window Mechanism

Line 0

Line 1

Line 2

Line 0

Line 1

Line 2

Line 3

The progression of events is continued in the next figure. Image Data Manager
issues copies to start copying lines in internal memory once more than half the
internal memory is filled by IDM. This situation allows the data that is being
fetched to wrap back to the appropriate location in internal memory and fetch
the next line.

Figure 2–5. Progression of Events in Internal Memory for Sliding Window

Line 4

Line 5 is mirrored

Line 2

Line 4

Line 5

Line 6

Line 3Line 3

Line 4

Line5

Line 4 is mirrored

Line 1

Line 2

Line 3

Line 4 Line 4

Line 5

Most
recent

line

Three lines for
iteration 2

Three lines for
iteration 3

Three lines for
iteration 4

Conceptual Details of Image Data Manager (IDM) Implementation

 2-8

Figure 2–5, shows further progression of events, with respect to how copy
transfers are issued, to mirror lines as soon as a line past half the internal
memory is used. In addition the wrap around point is changed to be one line
above the half of the internal memory. Thus it is only on the first iteration that
three new lines are fetched and written into the start of the internal memory.
For every iteration after this, one new line is fetched and copied into the ap-
propriate location. For every user query of the IDM “curr_ptr” a pointer to the
current contiguous section of three lines is returned, so that users can begin
processing their algorithm.

The API details that users can call to take advantage of the double buffered
and sliding window mechanisms are discussed in the next section. It is impera-
tive that users understand the internal memory buffering requirements and the
different situations that IDM offers support for.

2.2.3 Data Transfers that Image Data Manager Does Not Support

The Image Data Manager does not support transfers of multiple lines with vari-
able widths. It does not support transfer of multiple lines with fixed width, that
have variable offsets between them. However these cases are not common
for image processing tasks IDM does not allow multiple lines of the image
brought into internal memory to be written with either a fixed or variable offset.
The multiple lines of the image are written into internal memory to be located
contiguously. This kind of data transfer may be required occasionally to take
care of boundary or edge conditions. However this assumes a specific bound-
ary handling condition namely one of reflection across the boundaries and
hence is not provided for in the IDM routines as other boundary handling condi-
tions are possible. IDM supports only the double buffered mode on the output
streams.

Image Data Manager API Documentation

2-9Image Data Manager (IDM)

2.3 Image Data Manager API Documentation

Image Data Manager (IDM) is a set of library routines that offer abstraction for
double buffering DMA requests, to efficiently move data in the background dur-
ing processing. They have been developed to help remove the burden from
the user of having to perform pointer updates in the code. IDM functions use
DAT Calls from CSL to move data between external and internal memory.
They can be extended in future to use EDMA/DMA calls as appropriate based
on the device. All the functions detailed below assume that a DMA channel has
been opened to support either 1D or 2D transfers using a DAT_open call. In
addition each call to the IDM functions makes sure that the pointer handed off
to the user points to a region in which data transfer has been completed, by
waiting on the DMAs. Since the DMAs are done in a double-buffered fashion
the wait call does not actually block the CPU, but merely verifies that the data
transfer has indeed been completed. This is done internally by the IDM
through the use of DAT_wait calls that make sure that the data transfer issued
by a DAT_copy completes.

The following IDM functions are currently defined:

� dstr_open: Open an input/output image data stream to bring data from
external to internal memory or viceversa.

� dstr_get: Bring data from external to intenal memory allowing for either
one line at a time or multiple lines at a time without any offset between
them. This function should only bre used on ainput stream. The behaviour
of this function when used on an output stream cannot be guaranteed.

� dstr_get_2d: Bring data from external to internal memory allowing for
etither one line at a time, or multiple lines at a time, with no/fixed offset be-
tween the lines. This function should only be used on an input stream. The
behaviour of this function when used on an output stream cannot be guar-
anteed.

� dstr_put: Commit data from internal memory to external memory either
one line at a time, or multiple lines without any offset between them. This
function should only be used on an output stream. The behaviour of this
function when used on an input stream cannot be guaranteed.

� dstr_put_2d: Commit data from internal memory to external memory ei-
ther one line at a time, or multiple lines with no/fixed offset between
successive lines. This function should only be used on an output stream.
The behaviour of this function when used on an output stream cannot be
guaranteed.

Image Data Manager API Documentation

 2-10

� dstr_rewind: This function performs a stream rewind, by resetting the
pointer to the external memory to the new location. The number of itera-
tions that have been executed is not reset. Hence when the stream is ini-
tialized, the size of the external memory should be the sum of all the re-
gions in external memory from which data will be feteched.

� dstr_close: This function closes the streams opened using dstr_open.
This function waits for any previous DMAs to complete and then closes the
stream. This function should only be called on a stream that has already
been opened.

dstr_get

2-11 Image Data Manager (IDM)

Initializes input/output streamdstr_open

Prototype int dstr_open
{

dstr_t *dstr,
void *x_data,
int x_size,
void *i_data,
unsigned short i_size,
unsigned short quantum,
unsigned short multiple,
unsigned short stride,
unsigned short w_size,
dstr_t_dir_t dir

};

Arguments dstr_t *dstr DMA Stream Structure
void *x_data “External” data buffer
int x_size Size of external data buffer
void *i_data “Internal” data buffer
unsigned short i_size Size of internal data buffer
unsigned short quantum Size of single transfer get/put
unsigned short multiple Number of lines
unsigned short stride Stride amount for external pointer
unsigned short w_size Window size, 1 for double buffering
dstr_t dir Direction Input/Output

Return Value Int 0 – function succeeded
{–1,–2,–3}– function failed

Description Initializes input/output stream. Must be used before dstr_put/dstr_get or
dstr_put_2d/dstr_get_2d calls are used. dstr_close should be used only on a
stream that has been opened using dstr_open.

Returns pointer to current area in internal memorydstr_get

Prototype (void *) dstr_get();

Arguments none

Return Value (void *) Returns a pointer to current input buffer.

Description Returns a pointer to the current area in internal memory that contains valid
data.

dstr_get_2d

2-12

Returns pointer to current area in internal memorydstr_get_2d

Prototype (void *) dstr_get_2d();

Arguments none

Return Value (void *) Returns a pointer to current input buffer.

Description Returns a pointer to the current area in internal memory that contains valid
data. This function is called on an input stream, when succesive lines in exter-
nal memory are seperated by a fixed offset.

Returns pointer to current bufferdstr_put

Prototype (void *) dstr_put();

Arguments none

Return Value (void *) Pointer to current buffer in which output results can be stored.

Description Returns a pointer to current buffer in which output results can be stored. It also
commits the results of the previous output buffer to external memory.

Returns pointer to current bufferdstr_put_2d

Prototype (void *) dstr_put_2d();

Arguments none

Return Value (void *) Pointer to current buffer in which output results can be stored.

Description Returns a pointer to current buffer in which output results can be stored. It also
commits the results of the previous output buffer to external memory. This
function should be used when the output lines need to be written to external
memory either with zero/fixed offset between successive lines.

Direction Structure Definitions

2-13 Image Data Manager (IDM)

Rewinds input/output streamsdstr_rewind

Prototype int dstr_rewind
(

dstr_t *dstr,
void *x_data,
dstr_dir_t dir,
unsigned short w_size

)

Arguments dstr_t *dstr DMA stream structure
void *x_data Pointer to “external buffer” to which stream is reset.
dstr_dir_t dir, Direction of stream, input/output
unsigned short w_size Window size 1, for double buffering

Return Value int 0 for succesful rewind

Description Rewinds input/output streams to start fetching data from new location in exter-
nal memory. The external offset is reset to 0. This resets the number of external
transfers completed to 0.

Closes streamdstr_close

Prototype void dstr_close(dstr_t *dstr);

Arguments dstr_t *dstr Pointer to DMA stream structure

Return Value void none

Description This function closes the stream that was opened using dstr_open

Defines directions input/output
Direction Structure
Definitions

Prototype typedef enum dstr_dir_t
{

DSTR_INPUT,
DSTR_OUTPUT

} dstr_dir_t;

Arguments none

DMA Stream Definition

2-14

Return Value none

Description Structure that defines directions input/output. User can use the above defined
symbolic names to set direction of image stream.

Maintains state informationDMA Stream
Definition

Prototype typedef struct dstr_t
{

char *x_data;
int x_ofs;
unsigned x_size;
char *i_data;
unsigned short i_ofs;
unsigned short i_size;
unsigned short w_size;
unsigned short quantum;
unsigned short multiple;
unsigned short stride;
unsigned xfer_id;

} dstr_t;

Arguments char *x_data Pointer to external data
int x_ofs Current offset to external data
unsigned x_size Length of external data buffer
char *i_data Pointer to internal buffer
unsigned short i_ofs Offset to internal buffer
unsigned short i_size Size of internal buffer
unsigned short w_size Size of window
unsigned short quantum Amount transferred by a single get/put call
unsigned short stride Byte offset between succesive lines in external

memory that need to be fetched.
unsigned xfer_id Transfer id of the previous DMA

Return Value none

Description Internal structure that IDM uses to maintain state information. User declares
input and output streams of type dstr-t for using IDM.

Programming Model for the Image Data Manager

2-15 Image Data Manager (IDM)

2.4 Programming Model for the Image Data Manager

The typical steps involved in utilizing an image stream from the Image Data
Manager are summarized in Figure 2–6. These steps need to be followed for
creating new image streams and for utilizing them in bringing the required data
by the algorithm.

Figure 2–6. Steps Involved in Creating and Using Image Streams

Open DMA channel using DAT call in CSL

Initialize the image stream using the external
and internal addresses, stride amounts,

and direction of transfer using
call to dstr_open

Is the
image stream

an input stream?

Y N

Get input data using
dstr_get for 1D
transfers and

dstr_get_2D for
2d transfers

Use dstr_put for
1D transfers or
dstr_put_2D for

2D transfers

Is input
image stream transfer

complete for the
algorithm?

Is output
image stream transfer

complete for the
algorithm?

Y Y

NN

Close input image stream Close output image stream

Close DMA channel obtained using DAT

Conclusions

 2-16

2.5 Conclusions

This chapter introduced the Image Data Manager, a set of utilities used in
seamlessly bringing the data required for the algorithm. Image Data Manager
uses the DAT module from CSL to issue the calls required for 1D and 2D trans-
fer of data. The conceptual implementation of the Image Data Manager and
how it provides the abstraction of double buffering and sliding window were
discussed. In addition the benefits of software re-usability and maintainability
of the resulting code were also discussed. The APIs that form the IDM and their
invocation sequence along with their capabilities were also discussed in this
chapter.

Concepts discussed in this chapter will be used in the next chapter to develop
generic templates, in the form of application level drivers that users can lever-
age for application development. The Image Data Manager and its associated
functions are used in the development of each of these application drivers, and
hence programmers will find it useful to familiarize themselves with the capa-
bilities provided by IDM.

3-1

Development of Application Drivers as Generic
Templates for Image Processing

This chapter makes use of the Image Data Manager routines discussed in the
previous chapter to develop generic templates in the form of application level
drivers. The use of these application drivers to develop new applications is dis-
cussed in Chapter 4. While it is impossible to provide generic templates that
cover all possible situations, the templates provided here are meant to be rea-
sonably representative of common image processing algorithms. This chapter
discusses the development of gray scale and color application drivers. Differ-
ent approaches to generating these application drivers are discussed and their
resulting change in performance are also summarized. A brief overview of the
hardware is provided so that programmers can gain a better understanding of
the hardware they are programming for.

Topic Page

3.1 Imaging TDK Hardware 3-2.

3.2 Video Capture 3-4.

3.3 Video Display 3-7.

3.4 Application Drivers for Gray Scale Processing 3-9.

3.5 Development of Color Application Drivers 3-18.

3.6 DSP Loading for Color Application Drivers 3-26.

3.7 Conclusions 3-27.

Chapter 3

Imaging TDK Hardware

 3-2

3.1 Imaging TDK Hardware

The Imaging TDK hardware consists of a C6711 DSK with 16MB SDRAM, and
a daughtercard that provides video capture, display, and formatting capabili-
ties. The daughtercard (Figure 3–1) includes:

� NTSC/PAL digital video decoder IC (TI TVP5022)

� NTSC/PAL digital video encoder IC (TI TVP6000)

� Video Palette IC (TI TVP3026C)

� Xilinx FPGA that includes the following functions: card controller, FIFO
buffer manager, front/back end interfaces. Details of the interfaces served
by the FPGA are provided in Appendix I

� 16Mbit SDRAM (capture frame memory), with option to support 64Mbit
devices

The daughtercard provides the ability for the following types of video capture
and display:

� Input video signal capture is limited to a single NTSC/PAL signal

� Input signal should of composite video format

� Display output may be in the form of a 16-bit RGB (565) signal

The daughtercard hardware includes the following:

� 1 set of TMS320C6000 daughtercard connectors (male, solder side)

� Female RCA connector for composite video input (NTSC/PAL)

� Female S-Video connector for component (Y-C) video input (NTSC/PAL)

� Female RCA connector for composite video output (NTSC/PAL)

� Female S-Video connector for component video output (NTSC/PAL)

� Female 15-pin VGA connector for RGB monitor output

Imaging TDK Hardware

3-3Development of Application Drivers as Generic Templates for Image Processing

Figure 3–1. Imaging TDK Daughtercard Block Diagram

Video
CTL

CTL
regs

Display line
FIFO

Write
enable

EMIF logic

SDRAM
CTL

Y

Cr

Cb

Line FIFOs

FPGA

Display line
FIFO

16

TVP3026

TVP5022

32

8

Events (TINPn, EINTn)

DSP EMIF interface

Peripheral daughtercard connector

Peripheral daughtercard connector

RGB
out

Composite
in

Video Capture

 3-4

3.2 Video Capture

The Imaging TDK daughtercard includes two video input ports for NTSC/PAL
video, of which one may be active at any time. The NTSC/PAL inputs consist
of an industry standard RCA jack for composite video input, and an S-video
jack for component (Y-C) input. Both inputs are routed to the TVP5022 video
decoder, and may be configured for square-pixel or ITU standard resolutions.
The TVP5022 performs digitization and minimal filtering of the video inputs.
All video input data is digitized in the 4:2:2 format, to produce a standard
YCrCb pixel stream. Since most DSP algorithms operate on input data as sep-
arate Y, Cr, and Cb blocks, the FPGA interface performs separation of the digi-
tal stream before writing it to the capture frame buffer. Captured data is stored
as two separate fields, in three separate blocks in the frame buffer.

Data is expected from the TVP5022 in the Cr0-Y0, Cb0-Y1, Cr2-Y2,
Cb2-Y3, … format. The FPGA internally adjusts the data stream for endian,
and stores it into the capture frame memory as shown in Figure 2–2. The
FPGA manages a capture frame buffer in an on-board SDRAM memory bank.
SDRAM was chosen due to its low cost for the required memory bank size
(2MB), however, the DSP interface to this buffer is of the ASRAM type. The
FPGA performs this translation autonomously. It is noted that the capture
frame memory is read only to the DSP interface. Any writes attempted to the
frame memory by the DSP are discarded.

The FPGA SDRAM controller supports both 2MB and 8MB configurations of
SDRAM. The 8MB option can be used in the event that 2MB devices become
scarce and also in the cases where additional capture memory is required. For
example, in the case of ITU-sampled PAL video, 625 lines of 768 pixels must
be captured, which exceeds the 2MB capacity of the capture buffer in that con-
figuration. The FPGA supports both memory types and is controllable via soft-
ware. Table 3–1 outlines the capture formats vs memory requirements.

Table 3–1. Video Capture Memory Requirements

Format Required Memory

NTSC, square pixel 2MB

PAL, square pixel 8MB

NTSC, ITU601 2MB

PAL, ITU601 8MB

Note:

The TVP5022 chipset and FPGA support sampling of all versions of the PAL
standard, though stuffing options of the TVP5022 crystal may be required.

Video Capture

3-5Development of Application Drivers as Generic Templates for Image Processing

Read accesses to the frame memory are throttled as appropriate using the
DSP EMIF ARDY signal. Since the SDRAM memory is faster than the ASRAM
interface, this is generally only necessary at the beginning of a burst of reads,
and possibly when refreshes of the SDRAM bank are required. The FPGA in-
cludes a small read FIFO to minimize the effect of this. It should be noted how-
ever that the frame memory management is most efficient when accessed li-
nearly. It is suggested that the application software access the memory in a
linear fashion, to minimize SDRAM page misses which will slow the memory
transactions. The ARDY signal is also asserted when bank conflicts occur, re-
sulting from arbitration effects with the capture line FIFOs. The effect is mini-
mized by the existence of the FIFOs, plus a priority scheme implemented in
the FPGA controller.

All video input timing is provided by the TVP5022. This includes a vertical syn-
chronization pulse, plus a composite blanking signal which indicates the pres-
ence of active data on the pixel bus. A pixel clock is also provided, which is
used by the FPGA to latch data into the aforementioned line FIFOs. Data is
routed to the FPGA over an 8-bit video input port. Data may be captured in ei-
ther the square pixel (640x480 or 768x576) or ITU (720x480 or 720x576) for-
mat. The format is determined via a control register bit in the TVP5022, which
must be programmed to denote line length divisibility by 64 or 72 (all formats
fit into one of these two categories). The setting of the input mode, as well as
complete configuration of the TVP5022, is provided via an I2C interface. A
complete list of the addressable registers and their functions in the TVP5022
is available at:

http://www.ti.com

Captured data is stored as two separate fields (odd and even fields), in three
separate blocks (Y, Cr, Cb) in the frame buffer memory on the daughtercard.
Note that the memory locations of the fields, as well as the blocks within the
fields, are not necessarily contiguous. Up to 3 frames of captured data may be
stored in the daughtercard memory. At any given time, the FPGA controls two
of the buffers to which it writes captured video data in a ping-pong fashion. The
application has access to the third buffer, which typically has the most recently
captured data. If the application falls behind in processing, the two buffers that
the FPGA controls can be toggled and the application simply runs at a process-
ing rate less than the captured 30 frames/sec. If the application can maintain
the full processing rate, the buffers are physically walked through by both the
FPGA and the application in a circular fashion. See Figure 2–3 for an explana-
tion of the capture buffer management.

Video Capture

 3-6

The FPGA directly controls all the capture data management, without any DSP
resource (specifically, a DMA channel). The FPGA provides a capture frame
interrupt to the DSP, which is used to inform the driver that a new frame is avail-
able for processing. The capture event may be mapped to one of the DSP
events as shown in Table 3–2.

Table 3–2. Capture Events

DSP Event Mapped to System Event … Intended Use …

EINTn (n = 4–7) Vertical sync falling (end of captured frame) Interrupt to CPU driver

Any DSP event line not tied to a capture (or display) event is tri-stated, such
that it may be used by another daughtercard or motherboard interface.

To maintain this buffer scheme, it is necessary for the IDK driver software to
inform the FPGA when the application has completed use of its buffer, and that
it may be returned to the pool of capture buffers which the FPGA owns.

Video Display

3-7Development of Application Drivers as Generic Templates for Image Processing

3.3 Video Display

The Imaging TDK daughtercard includes three video output ports, of which
one may be active at any time. Two of the ports output NTSC video, while the
third provides RGB output for a standard computer monitor. The NTSC outputs
consist of an industry standard RCA jack for composite video output, and an
S-video jack for component (Y-C) output. Both outputs are driven by the
TVP6000 video encoder, and may be configured for square-pixel or the ITU
standard resolutions. Both outputs operated in the standard TV manner of in-
terlaced frames. The RGB output is driven by the TVP3026, and can drive any
of the standard monitor resolutions, in a non-interlaced mode.

In the case of RGB output the FPGA provides the video timing to the output.
Consequently, the DSP display driver software must also program the FPGA
integrated video controller, which drives the timing information to the TVP3026
RGB palette.

Video data is built up in buffers in system memory on the C6711 DSK. Frame
buffer memory is of the SDRAM type, with a read CAS latency of three. The
imaging daughtercard does not include any addressable amount of video dis-
play memory. Video output data is transferred in real time from the frame buffer
to the imaging daughtercard. This data service can be provided by the DSP
EDMA controller and EMIF resources. Figure 3–1 shows a transfer of data
from the DSK frame buffer to the imaging daughtercard and display hardware.

The FPGA monitors the display device and generates events to the DSP mo-
therboard. The events supported by the FPGA for display are shown in
Table 3–3.

Table 3–3. Display Events

Event/Signal
May be Mapped to
Daughtercard Signal … Intended Use …

Pixel clock (active pixels only) TOUT0 or TOUT1 Timer period set to pixels per line,
TINT drives DMA line event

Composite blank falling (end of
active line)

EINT7, EINT6, EINT5, EINT4 EINTn drives DMA line event;
EINTn drives CPU interrupt

Vertical sync falling (end of
frame)

EINT7, EINT6, EINT5, EINT4 EINTn drives DMA frame event;
EINTn drives CPU interrupt

The preferred use of the above events is that the pixel clock be routed to one
of the timer inputs, and a single interrupt is used on the vertical synchronization
pulse to synchronize the DSP to the display. In this configuration, the selected
timer must be configured in pulse mode with a period equal to the number of
active pixels per line.

Video Display

 3-8

The FPGA is capable of driving to all DSP event lines, which include the four
processor edge-triggered interrupts (/EINTn, n = 4–7) and the two timer inputs
(TINPn, n= 0 or 1). Any DSP event line not selected for one of the above event
sources is tri-stated by the FPGA, allowing it to be used by another daughter-
card or motherboard interface.

Based on the above event selection, the IDK Display Driver configures the
DSP DMA (or EDMA) and timer module (if appropriate) to service display
events. The intended operation is that one DMA channel will be dedicated to
servicing line events (once per horizontal sync pulse), and a separate DMA or
CPU event per vertical sync pulse will be used for synchronization. The hori-
zontal event forces the DMA to transfer a line of data to the FPGA display
FIFO, via the aforementioned read of the motherboard SDRAM. The FPGA
latches this data into the FIFO autonomously, which feeds the output display
devices in real time.

Display events are scheduled such that data is ready for the display devices
before it is needed. Specifically, this is achieved by scheduling the first event
at the end of the vertical synchronization period. At this point, several lines of
blanked display (for which no data is needed) must still be timed, so the DMA
has time to perform the required accesses. In the case of an interrupt being
used for the horizontal line events, generation of this event is straightforward.
In the case of a timer however, generation is slightly more complicated, be-
cause the FPGA does not always source the horizontal video timing. In this
case, special hardware inside the FPGA inserts additional TINPn pulses to
‘fake’ a first line of video display, to force a DMA of data to the FPGA line FIFO.
The following diagram outlines the operation in both cases.

Since the FPGA is always one line ahead of the display, the last line event
reads data that is off the end of the display buffer. This does not have any ad-
verse effects, as the line FIFO is automatically reset during the vertical syn-
chronization period. The data read is discarded, and the first line event genera-
tion described above re-synchronizes the display properly.

Application Drivers for Gray Scale Processing

3-9Development of Application Drivers as Generic Templates for Image Processing

3.4 Application Drivers for Gray Scale Processing

Display drivers supporting these video display modes are included in the
Imaging TDK. The drivers are written using DSP/BIOSII and CSL. Refer to the
TMS320C6000 IDK User’s Guide (Literature number SPRU494) for additional
details. The application drivers developed in this section differ from the display
drivers in that they bring the image data into internal memory and allow the
user to focus on algorithm development. The application driver performs the
merging of the even and odd fields in external memory, during the course of
the algorithm. The device driver on the other hand uses the DMA/EDMA model
to perform merging of the image data, while the DSP waits for the DMA trans-
fers to complete. The merging combines the data stored in two separate fields
in the memory area allocated for the image display. Both the device drivers and
application drivers make use of the video capture library and video display li-
brary routines available in “vcard.lib”. Hence the mechanism for getting the
pointers to these external memory regions is the same, how the merging is per-
formed in the two drivers is different.

Captured data on the daughtercard is stored as two separate fields (odd and
even fields), in three separate blocks (Y, Cr, Cb) in the frame buffer memory
on the daughtercard. This necessitates the creation of two application drivers
one that works on the image in progressive order namely a line from the even
field followed by a line from the odd field, and another that works in field order
namely the even field followed by the odd field. Image processing applications
in general can work on images either in progressive order or in fields order.
However certain image processing applications require the data to be in pro-
gressive order. Hence both types of application drivers are provided for the dis-
play of a 640 by 480 image.

3.4.1 Gray Scale Driver

In all application drivers developed in this programmer’s guide, the driver is la-
beled with an “odd_even” nomenclature if it works on the even field followed
by the odd field. All other application drivers work on the image in normal or
progressive order namely one line from the even field followed by one line from
the odd field. It may be useful for programmers to review the steps involved
in opening, utilizing and closing an image stream in IDM that was discussed
in section 2.4.

The application driver that works on images in normal or progressive order re-
quires two input image streams, one for the lines of the even field and one for
the lines of the odd field. The successive lines within any field, are contiguous
in memory although the two fields themselves are not. The application driver
also requires an output stream to write the lines to the display area one after

Application Drivers for Gray Scale Processing

 3-10

the other. Since the lines of the even and odd field are being merged, there is
no offset between the successive output lines. This application driver can be
used by programmers to put together applications that have the following data
flow model.

Figure 3–2. Data Flow For Gray Scale Driver with Progressive Order

Even
field

Odd
field

Swithch back and
forth between the

two fields

IDM

Internal memory

Input data

Output data

Algorithm

IDM Display area
(external memory)

Figure 3–2, shows the interaction of IDM in bringing data to the application by
switching between the even and odd fields back and forth to allow users to
work on the image in progressive order, although the data on the Imaging TDK
daughtercard is organized as two separate fields. The code to initialize the in-
put image stream for the even field is shown below:

Step 1: Open input image stream for even field

 /*––*/
 /* Initizlize input stream to start fetching from even field, */
 /* of size rows * cols, into int_mem1 (internal memory) of */
 /* size 2 * cols, 1 line of ”cols” pixels every time. */
 /* Check returned error code if any */
 /*––*/

 err_code = dstr_open (&iev_dstr,
 in_image_ev–>img_data,
 rows * cols,
 int_mem1,
 2 * cols,
 cols,
 1,
 cols,
 1,
 DSTR_INPUT);

Step 2: Open another input stream for the odd field

 /*––*/
 /* Initizlize input stream to start fetching from odd field, */
 /* of size rows * cols, into int_mem1 (internal memory) of */
 /* size 2 * cols, 1 line of ”cols” pixels every time. */
 /* Check returned error code if any */
 /*––*/

Application Drivers for Gray Scale Processing

3-11Development of Application Drivers as Generic Templates for Image Processing

 err_code = dstr_open (&iod_dstr,
 in_image_od–>img_data,
 rows * cols,
 int_mem2,
 2 * cols,
 cols,
 1,
 cols,
 1,
 DSTR_INPUT);

Step 3: Open output image stream for writing data to display buffer

 /*–––*/
 /* Initialize output stream to write to out_image–>img_data, */
 /* the merged fields back and the results of the algorithm. */
 /* into int_mem3 (internal memory), 1 line at a time. */
 /* Check for any error codes if any */
 /*–––*/

 err_code = dstr_open (&o_dstr,
 out_image–>img_data,
 out_rows * out_cols,
 int_mem3,
 2 * cols,
 cols,
 1,
 cols,
 1,
 DSTR_OUTPUT);

This completes the first stage of setting up the image streams for the
input and output as defined in the flow chart in section 2.4.

Step 4: This step requests data through the dtsr_get and dtsr_put calls on
the input and output image streams for performing the algorithm in
this case “copy_word”. The code makes use of the even and odd in-
put image streams back to back, and writes data to the output
stream, which in turn transfers it to the display buffer. The copy_word
routine copies data from input to output using word wide copies. The
intent of this function, was to merely highlight the setting up of the
image streams required to support an algorithm that requires input
lines in normal or progressive order

 /*––*/
 /* For all rows of the input even and odd field, merge the */
 /* results by using the copy routine. The input data is obtained */
 /* by calls to dstr_get and the output calls are obrtained using */
 /* calls to dstr_put. */
 /*––*/

 for (i = 0; i < (rows + 1); i++)

Application Drivers for Gray Scale Processing

 3-12

 {
 /*––*/
 /* Obtain input and output pointers. This call to dstr_get */
 /* uses the even field. The call to dstr_put always operates */
 /* on the output stream. */
 /*––*/

 in_data = (unsigned char *) dstr_get(&iev_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 /*––*/
 /* Perform copy routine using word wide copies. The in_data */
 /* and out_data are input and output pointers that the algo– */
 /* rithm can use to perform the copy. Other more advanced */
 /* user algorithms should go here. */
 /*––*/

 copy_word(in_data, out_data, cols);

 /*––*/
 /* Obtain input and output pointers. This call to dstr_get */
 /* uses the odd field. The call to dstr_put always operates */
 /* on the output stream. */
 /*––*/

 in_data = (unsigned char *) dstr_get(&iod_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 /*––*/
 /* Perform copy routine using word wide copies. The in_data */
 /* and out_data are input and output pointers that the algo– */
 /* rithm can use to perform the copy. Other more advanced */
 /* user algorithms should go here. */
 /*––*/

 copy_word(in_data, out_data, cols);
 }

Step 5: This completes the stage of checking if all the data required by the
algorithm is complete or not. The first call to put, informs the user of
the output buffer space, that can be used to store results. Therefore
one additional put call is required to commit the last set of output re-
sults to external memory

 /*––*/
 /* Commit last set of results to memory */
 /*––*/

 dstr_put(&o_dstr);

Application Drivers for Gray Scale Processing

3-13Development of Application Drivers as Generic Templates for Image Processing

Step 6: The last step in the flow chart is to close all the image streams that
were opened. The code to implement this step is shown:

 dstr_close(&iev_dstr);

 dstr_close(&iod_dstr);

 dstr_close(&o_dstr);

This step convludes all the required steps that need to be followed
when users interact with image streams.

The algorithm itself in this case is very simple, but is shown for the
sake of completeness:

/*–––*/
/* Simple user algorithm illustrating word wide optimization on */
/* a simple memcpy like operation. More advanced algorithms may */
/* be written here. */
/*–––*/

void copy_word(unsigned char *inp, unsigned char *out, int cols)
{

 int i;

 /*–––*/
 /* Cast incoming pointers to word aligned data. Image Data */
 /* Manager will return aligned pointers so long as internal */
 /* and external start addresses are aligned. */
 /*–––*/

 unsigned int *input = (unsigned int *) inp;
 unsigned int *output = (unsigned int *) out;

 /*–––*/

 /* Use word wide accesses to load and store from input and */
 /* output arrays respectively. */
 /*–––*/

 for (i = 0; i < (cols >> 2); i++)
 {
 output[i] = input[i];
 }
}

3.4.2 Gray Scale Application Driver for Odd-Even Field Based Processing

The application driver for field based processing is presented in this section.
The captured data on the Imaging daughtercard is stored as two separate
fields (odd and even fields), in three separate blocks (Y, Cr, Cb) in the frame
buffer memory on the daughtercard. The next application driver is intended as
a generic template for image processing applications that can use field based
processing.

Application Drivers for Gray Scale Processing

 3-14

Figure 3–3. Data Flow for Field-Based Processing-Based Application Driver

Even
field

Odd
field

IDM

Internal memory

Input data

Output data

Algorithm

IDM

Display area
(external memory)

The steps required to implement this code follow the steps shown in the flow
chart described in section 2.4. Unlike the previous application driver that used
separate input image streams for both the even and odd field, the present ap-
plication driver, uses one input image stream and rewinds to the start of the
odd output stream once the even image stream is exhausted. The following
steps accomplish the different steps in the flowchart shown in section 2.4:

Step 1: This step opens an input image stream to fetch “num_lines” lines of
the even field into internal memory. The variable num_lines allows
the user to work on multiple lines at once for a given algorithm. The
internal memory needs to be of size 2 * num_lines * cols, to hold the
data as discussed earlier. Every access fetches “num_lines” lines
each “cols” pixels wide and strides external memory by “cols” pixels
as successive lines of the even field are contiguous in memory. The
example included with the IDK sets num_lines to be 2

. /*––*/
 /* Initizlize input stream to start fetching fom even field, */
 /* of size 2 *rows * cols, including the even and odd fields */
 /* into int_mem1 (internal memory) of size 2 * num_lines * cols,*/
 /* ”num_lines” lines of ”cols” pixels every time. */
 /* Check returned error code if any */
 /*––*/

 err_code = dstr_open (&i_dstr,
 in_image_ev–>img_data,
 (2 * rows * cols),
 int_mem1,
 2 * num_lines * cols,
 cols,
 num_lines,
 cols,
 1,
 DSTR_INPUT);

Step 2: This stage opens an output image stream to write out the results ob-
tained by processing multiple lines of the even or odd field. Hence

Application Drivers for Gray Scale Processing

3-15Development of Application Drivers as Generic Templates for Image Processing

successive lines need to be separated by a fixed offset in external
memory. The output image stream is set up using the “dstr_open”
call as shown. In this particular call note that the stride amount in ex-
ternal memory is set to “2*cols” to provide the fixed offset between
successive lines that are written to external memory. The fact that
multiple lines (num_lines in this case) need to be written out every
time is also specified in the “dstr_open” call

 /*–––*/
 /* Initialize output stream to write to out_image–>img_data, */
 /* to fetch ”num_lines” lines of pixels ”cols” wide at a time */
 /* and paste into the output area 2 * cols apart. Once the */
 /* even input stream is exhausted, the input stream rewinds */
 /* the odd field and the output stream rewinds to the second */
 /* line and pastes 2 lines apart every time. */
 /*–––*/

 err_code = dstr_open (&o_dstr,
 out_image–>img_data,
 out_rows * out_cols,
 int_mem2,
 2 * num_lines * cols,
 cols,
 num_lines,
 2 * cols,
 1,
 DSTR_OUTPUT);

Step 3: The following code implements two stages, namely the stage of get-
ting the necessary data by the appropriate calls to dstr_get_2D and
the dstr_pur_2D, and rewinding to the start of the odd field once the
even field has been exhausted. The outer j loop implements the two
passes, the first for the even field and the next for the odd field. The
inner “i” loop iterates for all the lines within a field

 /*––*/
 /* Process even field in one pass and odd field in a separate pass */
 /*––*/

 for (j = 0; j < 2; j++)
 {

 /*––*/
 /* Since ”num_lines” lines of pixels are brought in every time, the */
 /* inner loop runs for rows/num_lines. During this time pixels in */
 /* all ”num_lines” are processed. */
 /*––*/

 for (i = 0; i < (rows + num_lines)/num_lines; i++)|
 {

 /*––*/
 /* Obtain input and output pointers. This call to dstr_get_2D */
 /* uses the even field when j = 0, and the odd field when j */
 /* = 1. The call to dstr_put_2D on the first time indicates */
 /* to the user where to begin pasting into the output area. */
 /*––*/

Application Drivers for Gray Scale Processing

 3-16

 in_data = (unsigned char *) dstr_get_2D(&i_dstr);
 out_data = (unsigned char *) dstr_put_2D(&o_dstr);

 /*––*/
 /* Perform copy routine using word wide copies. The in_data */
 /* and out_data are input and output pointers that the algo– */
 /* rithm can use to perform the copy. */
 /*––*/

 copy_word(in_data, out_data, num_lines * cols);

 }

 /*––*/
 /* Commit last set of results to memory */
 /*––*/

 dstr_put_2D(&o_dstr);

 /*––*/
 /* Rewind input and output streams */
 /*––*/

 dstr_rewind(&i_dstr, in_rewind, DSTR_INPUT, 1);
 dstr_rewind(&o_dstr, out_rewind, DSTR_OUTPUT, 1);
 }

The first call to dstr_put_2D informs the user, where the output re-
sults for the present iteration of the algorithm need to be written.
Since this is issued, before any real outputs are available, one extra
call to dstr_put_2D is required outside the loop to commit the last set
of results to external memory. Once this has been accomplished, the
image streams on the input and output side are re-wound. The input
side image stream is reset to point to the start of the odd field, while
the reset point for the output stream is to the first odd line of the out-
put. The rewind of pointers is accomplished by calls to “dstr_rewind”.

Step 4: Once the input and output streams have finished bringing all the data
required for the algorithm, and committed all the processed results
to memory, the image streams need to be closed. This is accom-
plished by the following code

. /*–––*/
 /* Close input and output stream. */
 /*–––*/

 dstr_close(&i_dstr);
 dstr_close(&o_dstr);

This completes the application driver development for the gray scale
mode. The application code included is identical to the previous one
and hence is not repeated here. It copies the data in the input line
using word wide loads.

Application Drivers for Gray Scale Processing

3-17Development of Application Drivers as Generic Templates for Image Processing

3.4.3 DSP Loading for Gray Scale Application Drivers

The current set of application drivers provided with the IDK work for a 640 by
480 image. The size of the output image, the application drivers work with, can
be changed by programmers. This is illustrated by way of two applications that
are included in the IDK. The performance of the application drivers for a 640
by 480 image is summarized below, in terms of CPU loading.

Gray Scale Gray Scale Odd Even

Percentage DSP Loading 21 % 23 %

This leaves about 75% of the DSP cycles for algorithmic processing. The DSP
loading can be minimized further by processing 4 lines from either field at any
given time. Changing the IDM data transfer calls to use EDMA/DMA will also
help in reducing the DSP Loading. The DSP Loading is measured by using the
RTDX capability of BIOSII, and using the CPU Utilization Graph.

Development of Color Application Drivers

 3-18

3.5 Development of Color Application Drivers

The development of color application drivers is discussed in this section. The
color, application drivers are also written to provide users with both progres-
sive and field based processing. They make use of IDM to bring in the YCRCB
data and perform the color space conversion routine and convert the data to
RGB565 format. Therefore they make use of at least three input image
streams and one output image stream. The current settings in the examples,
provided with IDK are for a 640 by 480 image. This can be changed by the pro-
grammer to work for other resolutions that may be needed.

3.5.1 Color Application Driver for Progressive Order Using EDMAs to Merge
Even/Odd Fields

The first color application driver that is developed relies on the EDMA/DMA
transfer mechanism to perform the merge of the lines in the odd/even field in
external memory, while the DSP blocks for completion of the DMAs. The data
flow required in this case is similar to the one required for gray scale process-
ing as discussed under Section 3.4.1. While this is not the way in which the
final application driver is written, it is definitely worth the effort to consider the
different possibilities. The application driver fetches the data from the merged
buffer and performs color space conversion and writes out the results to the
display area.

The code to merge the lines of the even and odd field is shown below:

 /*––*/
 /* The input frame pointer contains six pointers, two each for the */
 /* Y, Cr and Cb data. These pointers are used to copy/capture data */
 /* (both fields) from daughter card to SDRAM (external memory) */
 /* by firing DMA transfers from these locations to arrays in */
 /* external memory. Wait on the transfer id of the last transfer */
 /* id to make sure tyhat transfers completed. */
 /*––*/

 xfrid = DAT_Copy2D(DAT_1D2D, input–>y1, ybuff, 640, 240, 640*2);
 xfrid = DAT_Copy2D(DAT_1D2D, input–>cr1, crbuff, 320, 240, 320*2);
 xfrid = DAT_Copy2D(DAT_1D2D, input–>cb1, cbbuff, 320, 240, 320*2);
 xfrid = DAT_Copy2D(DAT_1D2D, input–>y2, ybuff+640, 640, 240, 640*2);
 xfrid = DAT_Copy2D(DAT_1D2D, input–>cr2, crbuff+320, 320, 240, 320*2);
 xfrid = DAT_Copy2D(DAT_1D2D, input–>cb2, cbbuff+320, 320, 240, 320*2);
 DAT_Wait(xfrid);

This code makes use of the DAT transfer routines, to perform 2D copies, that
merge the lines from the even field and the odd field into external buffers ybuff,
crbuff, cbbuff. The IDM is used to perform color space conversion by setting
up image streams from ybuff, crbuff, cbbuff to internal memory to perform the
color space conversion routines and to write them out to the display area. The
code required to do this, once again follows the steps as discussed under sec-
tion 2.4.

Development of Color Application Drivers

3-19Development of Application Drivers as Generic Templates for Image Processing

Step 1: Open image streams to fetch data from ybuff, crbuff, cbbuff into inter-
nal memory. This is done using the following code and uses
“dstr_open” calls. The addresses of ybuff, crbuff, and cbbuff are set
in a structure which defines the image size and location. The luma
data derives the address of the external buffer by reading the struc-
ture in_image and obtaining the address
in_image_luma–>img_data

 /*––*/
 /* This initializes a luma stream of data, and brings a line worth of */
 /* luma data to internal memory using Image Data Manager */
 /*––*/

 err_code = dstr_open(&i_luma,
 in_image_luma–>img_data,
 rows * cols,
 int_luma,
 (2 *cols),
 cols,
 1,
 cols,
 1,
 DSTR_INPUT);

This completes the opening of the input image stream to fetch the
luma data into internal memory. Similar code is uded to set up the
image streams for CR and CB and the output stream and is shown
below. Since all input streams operate out of merged buffers (that
have the even and odd fields merged), there is no offset between
successive luma (Y), CR and CB lines. The CB image data stream
is similar to that of the CR and is not shown here, for conciseness

 ––/
 /* This initializes a Cr data stream to bring data into internal memory */
 /* using the Image Data Manager */
 /*––*/

 err_code = dstr_open(&i_cr,
 in_image_Cr–>img_data,
 (rows * cols) >> 1,
 int_cr,
 (cols),
 cols >> 1,
 1,
 cols >> 1,
 1,
 DSTR_INPUT);

The output stream is opened, using the following lines of code:

 /*––*/
 /* Initialize output stream to transfer data from internal memory to */
 /* display buffer. */
 /*––*/

Development of Color Application Drivers

 3-20

 err_code = dstr_open(&o_dstr,
 out_image–>img_data,
 (4 * rows * cols),
 out_data,
 (4 * cols),
 2 * cols,
 1,
 2 * cols,
 1,
 DSTR_OUTPUT);

Step 2: This completes the opening and setup of all the input and output
streams. The color space conversion routine is called to convert
each line of YCRCB data to RGB565 format for display. This routine
is hand optimized and maximizes the multiplier bandwidth of the ar-
chitecture. The algorithm is implemented by converting each line of
input through the color space conversion routine. The resulting out-
put line of RGB565 is committed to external memory. The code
shown, implements the color space conversion algorithm on the en-
tire image

 /*–––*/
 /* For all rows of the image, ontain working luma (Y), Chroma CR, CB */
 /* signals and call color space conversion routine to perform trans– */
 /* formation from YCrCb to RGB data. */
 /*–––*/

 for(i = 0; i < rows; i++)
 {

 /*–––*/
 /* The call to dstr_get returns the current set of working Y, Cr */
 /* and Cb pointers */
 /*–––*/

 Y = (unsigned char *) dstr_get(&i_luma);
 CR = (unsigned char *) dstr_get(&i_cr);
 CB = (unsigned char *) dstr_get(&i_cb);

 /*–––*/
 /* The call to dstr_put specifies where the output RGB results are */
 /* written to. */
 /*–––*/

 RGB = (unsigned char *) dstr_put(&o_dstr);

 /*–––*/
 /* Call color space conversion routine to work on current data */
 /*–––*/

 ycbcr422pl_to_rgb565_asm(coeffs, Y, CR, CB, RGB, cols);

 }

Once all the input data required for the algorithm and the processed
output data of the algorithm is committed back to external memory,
the input and output streams are closed. The code that implements

Development of Color Application Drivers

3-21Development of Application Drivers as Generic Templates for Image Processing

this is shown below. The first call to dstr_put is performed so that the
user knows where the processed results are to be written in internal
memory. Hence the last set of results need to be committed by per-
forming a separate dstr_put call outside the loop, before closing the
streams

 /*–––*/
 /* Commit last set of results. This is done by one extra put call out– */
 /* side the main loop. */
 /*–––*/

 dstr_put(&o_dstr);

 /*–––*/
 /* Close the input Y, Cr and Cb streams */
 /*–––*/

 dstr_close(&i_luma);
 dstr_close(&i_cr);
 dstr_close(&i_cb);

 /*–––*/
 /* Close output stream */
 /*–––*/

 dstr_close(&o_dstr);

3.5.2 Color Application Drivers for Progressive Order with DSP Doing Even/Odd
Field Merge

The examples included as part of the IDK also include another application driv-
er, that works on the image in progressive order. It is different from the previous
approach where the DSP blocked on completion of the DMA transfer requests.
The DSP performs the merge of the even and odd fields by opening six input
streams, three for the even field and three for the odd field and does the merge
as part of the transfer. It is exactly analogous to the gray scale driver that
worked on the even and odd field back to back.

The code to initialize the six different input streams is not shown here for con-
ciseness. The code that implements the color space conversion over the entire
image is shown. The calls to the get routine switch between the even and odd
fields so that they are processed back to back. There is no offset between
successive output lines that are processed in this driver

 /*––*/
 /* For all rows of the even and odd image field obtain luma Y, Cr and */
 /* Cb data and call optimized color space conversion routine. Commit */
 /* results to display buffer. Update luma Y, Cr and Cb with pointers */
 /* for odd fields and commit results to external memory. In this ex– */
 /* ample 1 line of the image from the even field and 1 line of the */
 /* image from the odd field are processed back to back. */
 /*––*/

 for (i = 0; i < rows; i++)
 {

Development of Color Application Drivers

 3-22

 /*––*/
 /* Obtain Y, Cr, Cb pointers for even field. The call to the put */
 /* routine returns information on where the output results are to */
 /* be written. */
 /*––*/

 Y = (unsigned char *) dstr_get(&i_luma_ev);
 Cr = (unsigned char *) dstr_get(&i_cr_ev);
 Cb = (unsigned char *) dstr_get(&i_cb_ev);
 RGB = (unsigned char *) dstr_put(&o_dstr);

 /*–––*/
 /* Call optimized color space conversion routine for even field */
 /*–––*/

 ycbcr422pl_to_rgb565_asm(coeffs, Y, Cr, Cb, RGB, cols);

 /*––*/
 /* Obtain Y, Cr, Cb pointers for odd field. The call to the put */
 /* routine returns information on where the output results are to */
 /* be written. */
 /*––*/

 Y = (unsigned char *) dstr_get(&i_luma_od);
 Cr = (unsigned char *) dstr_get(&i_cr_od);
 Cb = (unsigned char *) dstr_get(&i_cb_od);
 RGB = (unsigned char *) dstr_put(&o_dstr);

 /*–––*/
 /* Call optimized color space conversion routine for odd field */
 /*–––*/

 ycbcr422pl_to_rgb565_asm(coeffs, Y, Cr, Cb, RGB, cols);

 }

 /*–––*/
 /* Commit last set of results to memory by extra put call outside */
 /* the main loop. */
 /*–––*/

 dstr_put(&o_dstr);

Once all the data that is required by the algorithm has been fetched, and all
processed results have been committed to external memory, the image
streams need to be closed. The code that implements this is shown. This con-
cludes this application driver that works on the even field and odd field back
to back to produce the color application driver. The difference in performance
between these two drivers is discussed in the performance section for color
application drivers

 /*–––*/
 /* Close streams for evan and odd Y, Cr and Cb */
 /*–––*/

 dstr_close(&i_luma_ev);
 dstr_close(&i_cr_ev);
 dstr_close(&i_cb_ev);

 dstr_close(&i_luma_od);
 dstr_close(&i_cr_od);
 dstr_close(&i_cb_od);

Development of Color Application Drivers

3-23Development of Application Drivers as Generic Templates for Image Processing

 /*–––*/
 /* Close output stream handle */
 /*–––*/

 dstr_close(&o_dstr);

Notice that since the application driver works on both the even and odd field
at the same time, six input streams are required. These six input streams are
closed in this section once all the processing has been completed.

3.5.3 Color Application Drivers for Odd/Even Field Based Processing

The following color application driver is analogous to the second gray scale
application driver discussed in this chapter. It works on multiple lines of the
even field, and finishes processing all lines of the even field. It then starts to
work on the odd field, by fetching a multiple number of lines from the odd field,
till it finishes processing all lines from the odd field. Successive output lines that
are produced need to be offset by one line. The code to initialize the input
streams is not shown for conciseness. The code to initialize the output image
stream is shown below.

Step 1: Open output stream

 /*–––*/
 /* Initizlize stream for output data */
 /*–––*/

 err_code = dstr_open(&o_dstr,
 out_image–>img_data,
 (2 * out_rows * out_cols),
 out_data,
 4 * num_lines * out_cols,
 2 * out_cols,
 num_lines,
 4 * out_cols,
 1,
 DSTR_OUTPUT);

This application driver makes use of only three input image streams
and one output stream. Once all the lines of the even field have been
processed, the dstr_rewind field rewinds all image streams to point
to the start of the odd field. Notice that every call to dstr_put for the
output image stream will commit “num_lines” lines, each of size “2
* out_cols” (RGB 565 every pixel is represented as 16 bits), each of
which is offset by “4 * out_cols” amongst each other.

Step 2: Implement color space conversion for all lines of the image. This is
achieved by issuing calls to dstr_get_2D and dstr_put_2d. There are
two loops in the code required to implement this. The outer loop iter-
ates two times, performing the algorithm on all lines of the even field

Development of Color Application Drivers

 3-24

on the first iteration, and rewinding and performing the algorithm on
all lines of the odd field on the next iteration. The inner loop imple-
ments the algorithm on all lines of a given field. As usual, the first call
to dstr_put_2D is performed before any output has been processed,
to inform the user of the pointer in internal memory to which output
results can be written. The code that implements this stage is shown
below. The ability to fetch multiple lines allows users to balance their
data bandwidth to their processing load. The call to the color space
conversion routine is issued once to work on multiple lines.

/*––*/
/* The outer loop iterates twice, because it processes all the lines of */
/* the even field first, followed by the lines of the odd field next. */
/*––*/

for (j = 0; j < 2; j++)
{

 /*––*/
 /* For all rows of the even and odd image field obtain luma Y, Cr and */
 /* Cb data and call optimized color space conversion routine. Commit */
 /* results to display buffer. Update luma Y, Cr and Cb with pointers */
 /* for odd fields and commit results to external memory. In this ex– */
 /* ample 1 line of the image from the even field and 1 line of the */
 /* image from the odd field are processed back to back. */
 /*––*/

 for (i = 0; i < (rows + num_lines)/num_lines; i++)
 {

 /*––*/
 /* Obtain Y, Cr, Cb pointers for even/odd field. The call to put */
 /* routine returns information on where the output results are to */
 /* be written. These calls need to be to the 2D routines as mul– */
 /* tiple lines need to be read and written at the same time. */
 /*––*/

 Y = (unsigned char *) dstr_get_2D(&i_luma_ev);
 Cr = (unsigned char *) dstr_get_2D(&i_cr_ev);
 Cb = (unsigned char *) dstr_get_2D(&i_cb_ev);
 RGB = (unsigned char *) dstr_put_2D(&o_dstr);

 /*–––*/
 /* Call optimized color space conversion routine for even field */
 /*–––*/

 ycbcr422pl_to_rgb565_asm(coeffs, Y, Cr, Cb, RGB, cols * num_lines);

 }

 /*––*/
 /* Commit last set of results to output buffer for both even/odd */
 /* field. */
 /*––*/

 dstr_put_2D(&o_dstr);

 /*––*/
 /* Rewind luma, Cr and Cb streams to work on the odd field for the */
 /* next iteration. */
 /*––*/

Development of Color Application Drivers

3-25Development of Application Drivers as Generic Templates for Image Processing

 dstr_rewind(&i_luma_ev, luma_rewind, DSTR_INPUT, 1);
 dstr_rewind(&i_cr_ev, cr_rewind, DSTR_INPUT, 1);
 dstr_rewind(&i_cb_ev, cb_rewind, DSTR_INPUT, 1);
 dstr_rewind(&o_dstr, out_rewind, DSTR_OUTPUT, 1);

}

Step 3: Close all input and output image streams. This step completes the
application driver by closing all input and output image streams that
have been opened. This section of the code closes the three input
streams and one output stream. Unlike the previous application driv-
er that opened six input streams, three for the even field and three
for the output field, the present application driver opens three input
image streams and shares them between the two fields using the
dstr_rewind function

 /*–––*/
 /* Close streams for Y, Cr and Cb */
 /*–––*/

 dstr_close(&i_luma_ev);
 dstr_close(&i_cr_ev);
 dstr_close(&i_cb_ev);

 /*–––*/
 /* Close output stream handle */
 /*–––*/

 dstr_close(&o_dstr);

DSP Loading for Color Application Drivers

 3-26

3.6 DSP Loading for Color Application Drivers

The current set of color application drivers provided with the IDK work for a 640
by 480 image. The size of the output image, the application drivers work with,
can be changed by programmers. The performance of the application drivers
for a 640 by 480 image is summarized below, in terms of CPU loading.

Progressive Using
EDMA

Progressive Using
DSP

Field Based
Processing

DSP Loading 75% 61% 51%

This leaves about 75% of the DSP cycles for algorithmic processing. The DSP
loading can be minimized further by processing 4 or more lines from either field
at any given time. The current set of application drivers provided with the IDK
process two lines at a time. Changing the IDM data transfer calls to use EDMA/
DMA will also help in reducing the DSP Loading. The DSP Loading is mea-
sured by using the RTDX capability of BIOSII, and using the CPU Utilization
Graph. All the color application drivers perform color space conversion. This
allows for up to 50% of the DSP cycles to implement other algorithms using
the color application drivers. The purpose of providing the application that
works in progressive order using EDMAs, is to allow users to work on possibly
some other algorithm using the DSP while the EDMA performs the merge. In
the present application driver since there are no other algorithms, the DSP
blocks.

Conclusions

3-27Development of Application Drivers as Generic Templates for Image Processing

3.7 Conclusions

This chapter provided several examples of generic templates that program-
mers can use to develop generic application drivers. The application drivers
allow users to work with images in progressive order or to implement field
based processing. The application drivers allow users to work on multiple
lines, when field based processing is used. The application drivers for progres-
sive order can be extended to work on multiple lines as well. The ability to work
with multiple lines allows users to balance the data transfer bandwidth to the
processing load of the algorithm. The use of these generic templates in devel-
oping new applications will be examined in the next chapter.

4-1

Application Development and Prototyping
Using Generic Templates

This chapter makes use of the generic templates developed in the previous
chapter to aid users in initial application development and prototyping. This is
the first stage of application development. This chapter presents a typical ap-
plication development flow that is recommended based on our experience.
Two examples are presented in this chapter as part of application develop-
ment that leverage the application drivers developed in the previous chapter.
These are the median filtering application and the color space rotation applica-
tions. These applications are not as complicated as JPEG or H.263 demon-
strations included with the IDK. They are reduced in complexity, as they are
intended to demonstrate the steps involved in the development of new applica-
tions as opposed to demonstrating the capabilities of the DSP on a complex
algorithm.

Topic Page

4.1 Recommended Application Development Flow for IDK 4-2.

4.2 Development of the Non-Linear Median Filtering Algorithm 4-3.

4.3 Development of Color Plane Rotation Algorithm 4-11.

4.4 Conclusions 4-14.

Chapter 4

Recommended Application Development Flow for IDK

 4-2

4.1 Recommended Application Development Flow for IDK

Figure 4–1 shows the recommended algorithm development flow for the IDK.
The flow chart shown is recommended based on the experience gained in im-
plementing the more complicated demonstration scenarios that form a part of
the IDK.

Figure 4–1. Recommended Algorithm Development Flow for IDK

Problem statement

Can I use
ImageLIB
routines?

Y

N Use compiler/assembly
optimizer and develop
own implementation

Identify constituent pieces
of algorithm

Use IDM to wrap around the necessary
data flow required by the algorithm

Prototype and verify correctness

Provide XDAIS interface and
verify compliancy

Integrate into channel manager framework

Completed application that others can use

Development of the Non-Linear Median Filtering Algorithm

4-3Application Development and Prototyping Using Generic Templates

4.2 Development of the Non-Linear Median Filtering Algorithm

4.2.1 Problem Statement

Develop an application that demonstrates the power of non-linear median fil-
tering. The application should show the benefits of non-linear filtering by show-
ing an image corrupted with salt and pepper noise. It should demonstrate the
power of median filtering by filtering the noisy image with the median filter and
displaying the cleaned up image side by side with the noisy image.

4.2.2 Use of ImageLIB in Developing an Application

The problem statement shown above forms the inspiration for the develop-
ment of the included, grayscale application that forms part of the IDK. The rec-
ommended application flow chart shown in the previous section is followed to
develop this application. The median_3x3 is a key image processing kernel.
ImageLIB provides a collection of highly optimized functions for key image
processing tasks that are C callable. The median_3x3 function from ImageLIB
has an API that is obtained from the header file “median_3x3_h.h”. The API
for this function is shown:

* NAME *
* median_3x3 *
* USAGE *
* This routine is C–callable and can be called as: *
* *
* void median_3x3_asm(unsigned char * in_data, int cols , *
* unsigned char * out_data); *
* in_data = pointer to input array of unsigned chars *
* cols = width of in_data *
* out_data = pointer to output array of unsigned chars *
* *
* (See the C compiler reference guide.) *
* *
* DESCRIPTION *
* The benchmark performs a 3x3 median filtering algorithm. It *
* comes under the class of non–linear signal processing algorithms. *
* Rather than replace the gray level at a pixel by a weighted average *
* of the nine pixels including and surrounding it, the gray level at *
* each pixel is replaced by the median of the nine values. The median *
* of a set of nine numbers is the middle element so that half of the *
* elements in the list are larger and half are smoother. Median filt– *
* removes the effect of extreme values from data. Using a wide mask to *
* reduce the effect of noise results in un–acceptable blurring of sharp *
* edges in the original image. *
* *

IMAGELIB routines are written to provide the user with the flexibility of varying
the data bandwidth required to bring the data required for the algorithm with
the processing load. It can be seen that the median_3x3 kernel can work on

Development of the Non-Linear Median Filtering Algorithm

 4-4

either a single line or multiple lines at a given time. A more comprehensive ap-
plication that uses multiple ImageLIB function is discussed in the next chapter.
The next step in the flow chart is to wrap around the raw ImageLIB kernel the
necessary data flow required to implement the algorithm on the entire image.

4.2.3 Using IDM to Implement Data Flow for Algorithm

The median filter requires a sliding window mechanism, where it works on
three input lines at a given time. It requires three new lines, for the first iteration,
with each successive iteration dropping the oldest input line. This mechanism
is already available in IDM. Following the steps that were shown in the applica-
tion driver, IDM is used to implement the data flow required for the algorithm.
This is implemented as a series of steps as shown in the flow chart in section
2.4. The complete code that provides the necessary data flow is shown.

Step 1:

 /*––*/
 /* Open input stream with the following parameters */
 /* */
 /* External address: ext_ptr */
 /* External size: ext_size */
 /* Internal memory: int_mem */
 /* Internal size: 6 * cols */
 /* Number of bytes / line: cols */
 /* Number of lines/fetch: 1 */
 /* External stride/line: 2 * cols */
 /* Sliding window: 3 lines */
 /* Direction: Input stream */
 /*––*/

 err_code = dstr_open (&i_dstr,
 ext_ptr,
 ext_size,
 int_mem,
 (6 * cols),
 cols,
 1,
 2 * cols,
 3,
 (DSTR_INPUT));

This opens an input stream to fetch data from an external memory
location, into internal memory of size “2 * 3 * cols”, fetching one new
line at a time and implementing the sliding window protocol. The
opening of the image output stream for this application is done with
the following lines of code.

Development of the Non-Linear Median Filtering Algorithm

4-5Application Development and Prototyping Using Generic Templates

 /*––*/
 /* Open output stream with the following parameters */
 /* */
 /* External address: ext_ptr + cols */
 /* External size: rows * cols */
 /* Internal memory: corr_ptr */
 /* Internal size: 2 * cols */
 /* Number of bytes/line: cols */
 /* Number of lines: 1 */
 /* External stride: 2 * cols */
 /* Direction: output */
 /*––*/

 err_code = dstr_open (&o_dstr,
 ext_ptr + (cols),
 (2 * rows * cols),
 corr_ptr,
 (2 * cols),
 cols,
 1,
 (2 * cols),
 1,
 (DSTR_OUTPUT));

where the start of internal memory is pointed to by int_mem, and the
following pointers are defined.

 /*––*/
 /* ext_ptr is start of external memory for input data */
 /* corr_ptr is intenal memory where correlation result is stored */
 /* Since double buffering is used for 3x3 correlation, internal */
 /* memory needs to hold upto 6 columns */
 /*––*/

 char *ext_ptr = (char *) out_image–>img_data;
 char *corr_ptr = int_mem + (6 * cols);

Notice that corr_ptr points to the location in internal memory, in which
output results will be written into is allocated to be 6 lines past the
start of internal memory pointed to by “int_mem”. This takes care of
the buffering requirements for the input side as specified by the IDM.
Recall that this requirement specifies that the size of the internal
memory required for a stream needs to be twice as large as the
transferred amount, namely (2 * (3*cols)). This data flow covers
many common image processing algorithms such as correlation,
convolution, object detection.

Step 2: Implement the core algorithm by repeated calls to the ImageLIB ker-
nel

 /*––*/
 /* The following loop iterates rows times and computes 1 line of */
 /* median output. */
 /*––*/

Development of the Non-Linear Median Filtering Algorithm

 4-6

 for (i = 0; i < rows; i++)
 {

 /*––*/
 /* in_data is pointer to input buffer */
 /* out_data is pointer to output buffer */
 /*––*/

 in_data = (unsigned char *) dstr_get(&i_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 /*––*/
 /* Perform 3 x 3 median algorithm to implement low pass */
 /*––*/

 median_3x3_asm(in_data, cols, out_data);
 out_data[cols – 1] = out_data[cols – 2];
 }

Step 3: Recall that the first call to the put routine, merely returns to the pro-
grammer the location where the output results can be stored. Hence
an extra put call is required outside the main loop to commit the re-
sults. In addition once the output and input image streams have
completed their jobs, they need to be closed.

 /*––*/
 /* Commit last output buffer and close input and output streams */
 /*––*/

 dstr_put(&o_dstr);
 dstr_close(&o_dstr);
 dstr_close(&i_dstr);

4.2.4 Using Generic Templates to Feed Algorithm with Image Data

The next step is to actually feed the image processing algorithm with the re-
quired data. This is done by taking the generic templates developed in the pre-
vious chapter and identifying the one that best fits the present application. The
problem definition states, that both the corrupted image and the median fil-
tered image need to be shown side by side. This requires a split screen mode.
The existing application level drivers work on a 640 by 480 image resolution
for NTSC data. This needs to be modified to accommodate the split screen
mode, in which the first image is the corrupted image created by random salt
and pepper noise. The even_odd application driver template is used and modi-
fied as shown. The output stream is changed to send out lines which are half
the display width. The declaration for the output image stream for the modified
code is shown along with the code that creates a noisy reference image. The
noisy image forms the input to the median filtering algorithm. Hence care
should be taken to make sure that the output of the application driver is written
to the correct address for the median filter’s input image stream to bring in.
Once the noise has been injected on the reference image, and all lines have

Development of the Non-Linear Median Filtering Algorithm

4-7Application Development and Prototyping Using Generic Templates

been processed, the streams are closed as before. The noise, itself is gener-
ated by calls to the rand() function in the run time support library. The code that
generates the noise is not shown here for conciseness.

 /*–––*/
 /* Open output stream to write to out_image–>img_data, */
 /* the merged fields back and the results of the algorithm. */
 /* into int_mem3 (internal memory), 1 line at a time. */
 /* Check for any error codes if any */
 /*–––*/

 err_code = dstr_open (&o_dstr,
 out_image–>img_data,
 out_rows * out_cols,
 int_mem3,
 2 * cols,
 cols >> 1,
 1,
 cols,
 1,
 DSTR_OUTPUT);

 /*––*/
 /* For all rows of the input even and odd field, merge the */
 /* results by using the copy routine. The input data is obtained */
 /* by calls to dstr_get and the output calls are obrtained using */
 /* calls to dstr_put. */
 /*––*/

 for (i = 0; i < (rows + 1); i++)
 {

 /*––*/
 /* Obtain input and output pointers. This call to dstr_get */
 /* uses the even field. The call to dstr_put always operates */
 /* on the output stream. */
 /*––*/

 in_data = (unsigned char *) dstr_get(&iev_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 /*––*/
 /* The copy routine copies the even pixels contained in */
 /* ”in_data” into ”out_data”. Thus when the width of the */
 /* input is ”cols”, the width of the output data produced */
 /* by copy is ”cols >> 1”. To this output data, noise is */
 /* injected. */
 /*––*/

 copy_half(in_data, out_data, cols);
 noise(out_data, cols >> 1);

 /*––*/
 /* Obtain input and output pointers. This call to dstr_get */
 /* uses the odd field. The call to dstr_put always operates */
 /* on the output stream. */
 /*––*/

 in_data = (unsigned char *) dstr_get(&iod_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

Development of the Non-Linear Median Filtering Algorithm

 4-8

 /*––*/
 /* The copy routine copies the even pixels contained in */
 /* ”in_data” into ”out_data”. Thus when the width of the */
 /* input is ”cols”, the width of the output data produced */
 /* by copy is ”cols >> 1”. To this output data noise is */
 /* injected. */
 /*––*/

 copy_half(in_data, out_data, cols);
 noise(out_data, cols >>1);
 }

 /*––*/
 /* Commit last set of results to memory */
 /*––*/

 dstr_put(&o_dstr);

 /*––*/
 /* Close even and odd input streams and the output stream */
 /*––*/

 dstr_close(&iev_dstr);
 dstr_close(&iod_dstr);
 dstr_close(&o_dstr);

4.2.5 Putting the Modules Together for Initial Testing

The modules that create the split screen mode driver, and the module that im-
plements median filtering and writes the result comprehending the pitch have
been developed. These two modules are called one after another in the code
for the main task. The code that calls these two modules from the main task
is shown.

/*––*/
/* Algorithm to be executed is setup as a task under BIOS which gets scheduled*/
/* by the TASK Manager. */
/*––*/

void tskMainFunc()
{

 /*–––*/
 /* Perform greyscale algorithm */
 /*–––*/

 greyscale();
}

/*––*/
/* This is the greyscale algorithm where the luma channel alone is made use of*/
/*––*/

void greyscale()
{

 int frame_cnt;
 int hres;
 int vres;

Development of the Non-Linear Median Filtering Algorithm

4-9Application Development and Prototyping Using Generic Templates

 IMAGE in_image_ev;
 IMAGE in_image_od;
 IMAGE out_image;
 SCRATCH_PAD scratch_pad;

 /*––*/
 /* Configure capture hardware for square pixel and siplay hardware for */
 /* gray scale images. */
 /*––*/

 VCAP_config(VCAP_SQP);
 VDIS_config(VDIS_640X480_GS);

 /*––*/
 /* Obtain the default horizontal resolution, vertical resolution, bits */
 /* per pixel and pitch settings for gray scale mode */
 /*––*/

 hres = VDIS_settings.hres;
 vres = VDIS_settings.vres;

 /*–––*/
 /* Set the rows and columns parameter in the even and odd field image st– */
 /* ructures. The actual pointers to the image data will be returned by */
 /* calls to the imaging hardware using the library routines */
 /*–––*/

 in_image_od.img_cols = in_image_ev.img_cols = hres;
 in_image_od.img_rows = in_image_ev.img_rows = vres >> 1;

 /*–––*/
 /* Set the output rows and columns for the output image structure */
 /*–––*/

 out_image.img_cols = hres;
 out_image.img_rows = vres;

 /*–––*/
 /* The following loop, iterates for a fixed period of one day, in which */
 /* (24 hrs * 60 mts * 60 secs * 30 frmes/sec) are processed. After this */
 /* period the board hardware reests by a call to the cature and display */
 /* reset routines */
 /*–––*/

 for (frame_cnt = 0; frame_cnt <= (24 * 60 * 60 * 30); frame_cnt ++)
 {

 /*–––*/
 /* The current set of input and output pointers are obtained by */
 /* calls to the getFrame and toggleBuffs routine. By using the */
 /* SYS_FOREVER flag the function blocks until a new frame arrives */
 /* By setting the output side argument to 0, the next available */
 /* buffer is returned independent of the display event. */
 /* ”input” and ”output” are pointers to input frame and output */
 /* data. */
 /*–––*/

 input = VCAP_getFrame(SYS_FOREVER);
 output = VDIS_toggleBuffs(0);

 /*–––*/
 /* Set the pointer for the even, odd input fields. Also set the */
 /* pointer for image data on the output end */
 /*–––*/

Development of the Non-Linear Median Filtering Algorithm

 4-10

 in_image_ev.img_data = input–>y1;
 in_image_od.img_data = input–>y2;
 out_image.img_data = output;

 /*–––*/
 /* Also set parameters for the scratch–pad data structure to point */
 /* to appropriate amounts of external and internal memory as requ– */
 /* ired by application. */
 /*–––*/

 scratch_pad.ext_data = (char *) ext_mem;
 scratch_pad.ext_size = sizeof(ext_mem);
 scratch_pad.int_data = (char *) int_mem;
 scratch_pad.int_size = sizeof(int_mem);

 /*––*/
 /* User algorithm goes here. In this algorithm, the first block */
 /* copy_image copies the even pixels of a given line, to form */
 /* the split screen mode. It then corrupts the original data with */
 /* salt and pepper noise. The median algorithm then uses the corr– */
 /* upted input as source and produces a cleaned up image shown on */
 /* the right half of the screen, while the noisy image is produced */
 /* on the left half. */
 /*––*/

 copy_image(&in_image_ev, &in_image_od, &out_image, &scratch_pad);
 median3x3_image(&scratch_pad, &out_image);
 }

 /*–––*/
 /* Reset the capture and display hardware. */
 /*–––*/

 VDIS_config(VDIS_RESET);
 VCAP_config(VCAP_RESET);
}

The programmer is asked to refer to the TMS320C6000 Imaging Developer’s
Kit (IDK) Video Device Driver’s User’s Guide (Literature number SPRU499)
for more details on how the task is set up to run under BIOSII. This is set up
using the BIOSII .cdb file, which is included as part of the project. The main
task gets scheduled and runs periodically performing the algorithm. This same
algorithm could have been split into two tasks, namely one of creating the half
screen mode with the corrupted image and another that runs the median filter
on this corrupted image to produce a cleaned up image.

This step completes the initial development and testing of the algorithm. It is
by no means a complete solution. The algorithm still needs the eXpressDSP
wrapper to make it eXpressDSP-compliant. This allows this algorithm to be in-
tegrated with other algorithms. The Channel Manager can then be used to
manage all these algorithms and even configure them at run time.

Development of Color Plane Rotation Algorithm

4-11Application Development and Prototyping Using Generic Templates

4.3 Development of Color Plane Rotation Algorithm

4.3.1 Problem Definition

Develop a color plane rotation algorithm that performs rotation of the color
plane using the following equations:

cr_temp = Cr[i] – 128;
cb_temp = Cb[i] – 128;

cr_int = (cr_temp * cosine) – (cb_temp * sine);
cb_int = (cr_temp * sine) + (cb_temp * cosine);

cr_fin = (cr_int >> 15) + 128;
cb_fin = (cb_int >> 15) + 128;

This problem requires the manipulation of the components CR and CB. The
image size is not in a split screen mode. Therefore the generic templates de-
fined for color can be used without any changes to the IDM in the opening of
the streams. The CR, CB components for each line are rotated on a per-frame
basis. The code that sets up an initial angle and keeps it modulo (2*pi) is
shown:

 short cosine;
 short sine;

 static double ang = 0.0;
 const double PI = 3.1415927;
 ang += (PI / 120.0);
 if (ang >= (2 * PI)) ang = 0;

 cosine = 126*256 * cos(ang);
 sine = 126*256 * sin(ang);

The code required to provide the data flow for the algorithm is identical to that
of the generic templates provided for color. Therefore the code that performs
the opening of the image . The odd-even color application driver is chosen for
this application as it is the fastest of all the application drivers available. The
code that implements the calls to the rotate function before the color space
conversion is shown.

 for (j = 0; j < 2; j++)
{

 /*––*/
 /* For all rows of the even and odd image field obtain luma Y, Cr and */
 /* Cb data and call optimized color space conversion routine. Commit */
 /* results to display buffer. Update luma Y, Cr and Cb with pointers */
 /* for odd fields and commit results to external memory. In this ex– */
 /* ample 1 line of the image from the even field and 1 line of the */
 /* image from the odd field are processed back to back. */
 /*––*/

Development of Color Plane Rotation Algorithm

 4-12

 for (i = 0; i < (rows + num_lines)/num_lines; i++)
 {

 /*––*/
 /* Obtain Y, Cr, Cb pointers for even field. The call to the put */
 /* routine returns information on where the output results are to */
 /* be written. */
 /*––*/

 Y = (unsigned char *) dstr_get_2D(&i_luma_ev);
 Cr = (unsigned char *) dstr_get_2D(&i_cr_ev);
 Cb = (unsigned char *) dstr_get_2D(&i_cb_ev);
 RGB = (unsigned char *) dstr_put_2D(&o_dstr);

 /*–––*/
 /* Rotate Cr. Cb color plane using rotate routine */
 /*–––*/

 rotate(Cr, Cb, (cols * num_lines) >> 1, cosine, sine);

 /*–––*/
 /* Call optimized color space conversion routine for even field */
 /*–––*/

 ycbcr422pl_to_rgb565_asm(coeffs, Y, Cr, Cb, RGB, cols * num_lines);

 }

 dstr_put_2D(&o_dstr);

 dstr_rewind(&i_luma_ev, luma_rewind, DSTR_INPUT, 1);
 dstr_rewind(&i_cr_ev, cr_rewind, DSTR_INPUT, 1);
 dstr_rewind(&i_cb_ev, cb_rewind, DSTR_INPUT, 1);
 dstr_rewind(&o_dstr, out_rewind, DSTR_OUTPUT, 1);
}

 /*–––*/
 /* Close streams for odd Y, Cr and Cb */
 /*–––*/

 dstr_close(&i_luma_ev);
 dstr_close(&i_cr_ev);
 dstr_close(&i_cb_ev);

 /*–––*/
 /* Close output stream handle */
 /*–––*/

 dstr_close(&o_dstr);
}

This completes the modifications to the generic template required for imple-
menting the color plane rotation. The code that implements the actual rotation
as defined by the equations is also shown.

/*––*/
/* Function that rotates Cr, Cb color plane using cosine and sine */
/* values in Q15 math */
/*––*/

void rotate (unsigned char *Cr, unsigned char *Cb, int x_dim,
 short cosine, short sine)
{

Development of Color Plane Rotation Algorithm

4-13Application Development and Prototyping Using Generic Templates

 int i;

 short cr_temp;
 short cb_temp;

 int cr_int;
 int cb_int;

 short cr_fin;
 short cb_fin;

 for(i = 0; i < x_dim; i++)
 {

 /*–––*/
 /* Center pixels around 0, by deducting 128 from both Cr and */
 /* Cb. */
 /*–––*/

 cr_temp = Cr[i] – 128;
 cb_temp = Cb[i] – 128;

 /*––*/
 /* Rotate Cr and Cb by multiplying using cosine and sine */
 /*––*/

 cr_int = (cr_temp * cosine) – (cb_temp * sine);
 cb_int = (cr_temp * sine) + (cb_temp * cosine);

 /*––*/
 /* Convert Q15 number and add 128 back to center chroma */
 /* values around 128. */
 /*––*/

 cr_fin = (cr_int >> 15) + 128;
 cb_fin = (cb_int >> 15) + 128;

 /*––*/
 /* Limit values to the range of 0–255 */
 /*––*/

 Cr[i] = cr_fin & 0xFF;
 Cb[i] = cb_fin & 0xFF;
 }
}

This completes the initial development of this application for testing and verifi-
cation. The step of converting this algorithm into a eXpressDSP-compliant al-
gorithm and integration into the channel manager are not shown. These steps
are illustrated in the Chapter 5 for the image processing demonstration devel-
oped in Chapter 4 using ImageLIB.

Conclusions

 4-14

4.4 Conclusions

This chapter discussed by providing two examples, how the generic templates
discussed in Chapter 3, allow programmers to develop applications for initial
testing and verification. In particular it showed that in some cases the generic
application drivers may have to be modified slightly to accommodate the data
flow for the required algorithm. In other cases the generic application drivers
may prove to be an exact match for the data flow expected by the algorithm.
None the less, the presence of all these application drivers, should help pro-
grammers considerably in reducing their learning curve with the IDK.

5-1

Image Processing Using ImageLIB

This chapter deals with the use of the C6000 ImageLIB in developing image
processing applications. One of the demonstration scenarios developed as
part of the IDK is the image processing demonstration, that makes use of the
ImageLIB routines to perform image processing functions such as filtering,
thresholding and edge detection. The median filtering algorithm developed in
the previous chapter is another example of the use of ImageLIB. This chapter
intends to focus on a more concrete example that follows the recommended
application development flow from start to finish. The application that has been
developed and prototyped in this chapter will be integrated into the Channel
Manager framework.

Topic Page

5.1 Problem Definition 5-2.

5.2 Use of Image Data Manager to Manage Data Flow for ImageLIB
Components 5-6.

5.3 Modifying the Application Driver for the Algorithm 5-15.

5.4 Algorithm Integration for Initial Testing 5-18.

5.5 Performance Considerations 5-23.

5.6 Conclusions 5-26.

Chapter 5

Problem Definition

 5-2

5.1 Problem Definition

This demonstration is intended to highlight the following:

� The availability of several easy to use algorithms like Image Filtering,
Image “thresholding”, Sobel Edge detection using TMS320C62x
ImageLIB [2].

� The ease of use that the software architecture provides for algorithms to
be customized by the user.

Figure 5–1 shows the standard algorithms used to create four channels. The
Channel Manager sequences the operation of these channels. These algo-
rithms were chosen for the purposes of this demonstration as they are fairly
representative of a large class of common image processing tasks. The input
image as well as results of the image processing functions will be simulta-
neously displayed as shown in Figure 5–2.

Figure 5–1. Image Processing Demonstration

Pass
through To display

buffer

Task 1

Threshold To display
buffer

Task 2

Image
filter To display

buffer

Task 3

Sobel
edge detect To display

buffer

Task 4

Conditioned
input data

Problem Definition

5-3Image Processing Using ImageLIB

Figure 5–2. Image Processing Demonstration Display

Display
(640x480 or 800x600)

Original

Low-pass
filter

Binary

Sobel
edge detect

threshold

5.1.1 Use of ImageLIB Components

The TMS320C62x Image/Video Processing Library provides a rich set of com-
monly used image processing functions that have been optimized for perfor-
mance and code-size. As discussed earlier, the use of these routines either,
in their existing form or with minor variations allow the user to perform several
image processing algorithms. The following code example taken form Image-
LIB shows the piped loop kernel for 3 by 3 correlation, where the input mask
to be correlated is assumed to be a part of the image. The 3 by 3 correlation
sum, is computed and then shifted into the byte range by a user defined shift
amount, to display the output result in the byte range. The motivation behind
reproducing the piped loop kernel here, is to impress the fact that these rou-
tines offer high performance, smaller code-size, flexibility and C callability for
the user to exploit, without having to re-code these routines. The correlation,
median_3x3 and threshold kernels have been used in the programmer’s
guide, to illustrate this philosophy. In the following piped loop kernel for
corr_3x3 it can be seen that 18 multiplies, are performed in 9 cycles, maximiz-
ing the multiplier bandwidth of the architecture. The correlation kernel allows
for the implementation of low pass filters that sum to 1, and have positive filter
coefficients. The shift amount needs to be adjusted though, in accordance with
the filter coefficients. It will be shown later, how users can develop their own
convolution routine and plug it into the existing framework, if more general fil-
ters are desired. The ImageLIB library has been augmented with a convolution
kernel, that performs all types of filters, saturating the output pixel result to ei-
ther 0 or 255, since the first release of the library with CCS 1.2.

Problem Definition

 5-4

Figure 5–3. ImageLIB Code for corr_3x3 Kernel

LOOP: ; PIPED LOOP KERNEL

 [!A1] ADD .D2 SP,B9,B1 ; sum1 = (c00+c01+c02)
|| [!A1] ADD .L2X A0,B13,B9 ; sum1 = (c00+c01)
|| MV .L1X B1,A0 ; a20 = a21
|| MPY .M1 A3,A9,A3 ; c00 = (a30*mask30)
|| MV .S2 B3,SP ; a31 = a32
|| MPY .M2 B11,B8,B9 ; c01 = (a01*mask01)
|| LDBU .D1T2 *–A11(1),B11 ; a02 = pix02

 [!A1] MPY .M1X A12,B5,A12 ; c01 = (a31*mask31)
|| [!A1] ADD .L1 A13,A3,A12 ; sum2 = c00+c01+c02
|| [!A1] ADD .L2X B1,A14,B1 ; sum1 = sum1+sum0
|| ADD .S2 B9,B13,B13 ; sum1 = (c00+c01+c02)
|| MPY .M2 SP,B5,B3 ; c01 = (a31*mask31)
|| LDBU .D2T2 *B4++(2),B1 ; a22 = pix22

 [!A1] MV .L1 A4,A5 ;
|| MPY .M1X B3,A15,A2 ; c02 = (a32*mask32)
|| ADD .S1 A5,A12,A14 ; sum = sum+sum2
|| ADD .L2 B13,B12,B12 ; sum1 = sum1+sum0
|| MPY .M2X SP,A9,B10 ; c00 = (a30*mask30)
|| LDBU .D2T2 *–B4(1),B9 ; a22 = pix22

 [B0] B .S1 LOOP ; if(count) B LOOP
|| [!A1] ADD .L1X B10,A12,A12 ; sum2 = c00+c01
|| [!A1] ADD .L2X A14,B1,B1 ; sum = sum+sum1
|| [B0] ADD .S2 0xfffffffe,B0,B0 ; count––
|| MPY .M2 DP,B7,SP ; c01 = (a21*mask21)
|| MPY .M1 A2,A6,A12 ; c00 = (a00*mask00)
|| LDBU .D1T1 *A10++(2),A12 ; a32 = pix32

 ADD .L1 A12,A2,A2 ; sum2 = c00+c01+c02
|| [!A1] SHRU .S2 B1,0xc,B1 ; sum = sum>>shiftval
|| MPY .M1X B11,A6,A14 ; c00 = (a00*mask00)
|| LDBU .D1T2 *–A10(1),B3 ; a32 = pix32
|| MPY .M2X A13,B8,B9 ; c01 = (a01*mask01)

 [!A1] ADD .S1 A4,A2,A12 ;
|| [!A1] STB .D2T2 B1,*B2++(2) ; *OUTP= sum
|| MPY .M1 A13,A7,A12 ; c02 = (a02*mask02)
|| ADD .L1X A12,B9,A2 ; sum0 = (c00+c01)
|| MPY .M2X B11,A7,B13 ; c02 = (a02*mask02)

 ADD .L2X A12,B12,B12 ; sum = sum1+sum
|| MPY .M1 A0,A8,A0 ; c00 = (a20*mask20)
|| ADD .L1X A14,B9,A0 ; sum0 = (c00+c01)
|| MPY .M2 B1,B7,B13 ; c01 = (a21*mask21)

Problem Definition

5-5Image Processing Using ImageLIB

Figure 5–3. ImageLIB Code for corr_3x3 Kernel (Continued)

 SHRU .S2 B12,0xc,DP ; sum2 = sum2>>shiftval
|| MPY .M1X DP,A8,A0 ; c00 = (a20*mask20)
|| ADD .L1 A2,A12,A14 ; sum0 = (c00+c01+c02)
|| ADD .L2X A0,B13,B12 ; sum0 = (c00+c01+c02)
|| MPY .M2 B1,B6,B9 ; c02 = (a22*mask22)
|| LDBU .D1T1 *A11++(2),A13 ; a02 = pix02
|| MV .S1 A13,A2 ; a00 = a01
|| MV .D2 B11,B11 ; a01 = a02

 [A1] SUB .S1 A1,1,A1 ;
|| [!A1] STB .D2T2 DP,*–B2(1) ; *OUTP= sum2
|| ADD .L2X A0,SP,SP ; sum1 = (c00+c01)
|| ADD .L1X A3,B3,A13 ; sum2 = c00+c01
|| MPY .M1 A12,A15,A3 ; c02 = (a32*mask32)
|| MPY .M2 B9,B6,B13 ; c02 = (a22*mask22)
|| MV .S2 B9,DP ; a21 = a22
|| MV .D1 A12,A3 ; a30 = a31

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

 5-6

5.2 Use of Image Data Manager to Manage Data Flow for ImageLIB
Components

The availability of Image Data Manager makes the integration of the ImageLIB
components into actual algorithms that work on the whole image a simple task.
The following code shows an example for the ImageLIB correlation
corr_3x3_image rotuine, that requires three lines of the input image as input
at any given time, sliding down one line at a time. The output needs to be
double buffered so that processing can continue while DMA transfers take
place in the background. In later sections a custom convolution kernel that can
be developed and integrated in to the present system will be discussed. Since
both these algorithms require the same number of input lines and produce the
same nuber of output lines, the code shown below can also be used for accom-
plishing convolution on the whole image.

/*–––*/
/* Include header files for functions to be called from this routine */
/*–––*/

#include ”img_proc.h”
#include ”dstr_2D.h”
#include ”corr3x3_wr_p.h”

/*–––*/
/* If debug is defined include log objects for verifying correct init– */
/* ialization of streams. */
/*–––*/

#ifdef DEBUG
#include <std.h>
#include <log.h>
extern LOG_Obj trace;
#endif

/*–––*/
/* void corr3x3_image(SCRATCH_PAD * scratch_pad, IMAGE * out_image, */
/* char * out_ptr, int pitch, */
/* LPF_PARAMS * lpf_params) */
/* */
/* This function sets up the input and output streams for performing */
/* 3 x 3 correlation and accepts the following parameters */
/* */
/* Arguments: */
/* scratch_pad: external and internal scratch pad memory */
/* out_image: pointer to output image */
/* out_ptr: pointer location to start pasting into */
/* pitch: pitch argument to be used */
/* lpf_params: low pass filter parameters */
/*–––*/

void corr3x3_image(SCRATCH_PAD *scratch_pad, IMAGE *out_image,
 char *out_ptr, int pitch,
 LPF_PARAMS *lpf_params)
{

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

5-7Image Processing Using ImageLIB

 /*–––*/
 /* Obtain external and internal start addresses and their respective */
 /* sizes. */
 /*–––*/

 char *int_mem = scratch_pad–>int_data;
 char *ext_mem = scratch_pad–>ext_data;
 int int_size = scratch_pad–>int_size;
 int ext_size = scratch_pad–>ext_size;

 /*–––*/
 /* Set rows and cols to be half of the output image rows and cols */
 /*–––*/

 int rows = (out_image–>img_rows >> 1);
 int cols = (out_image–>img_cols >> 1);

 /*––*/
 /* ext_ptr is start of external memory for input data */
 /* corr_ptr is intenal memory where correlation result is stored */
 /* Since double buffering is used for 3x3 correlation, internal */
 /* memory needs to hold upto 6 columns */
 /*––*/

 char *ext_ptr = ext_mem;
 char *corr_ptr = int_mem + (6 * cols);

 /*–––*/
 /* The low pass filter in internal memory is set to the last line */
 /* The external low pass filter coefficient address is lpf_ext */
 /*–––*/

 unsigned char *lpf_ptr = (unsigned char *)(int_mem + int_size
 – (cols >> 1));
 unsigned char *lpf_ext = lpf_params–>mask;

 unsigned char *in_data, *out_data;
 int shift;
 dstr_t i_dstr, o_dstr;
 int err_code;
 int i, j;

 /*–––*/
 /* Copy low pass filter coefficients from external memory to inter– */
 /* nal memory. */
 /*–––*/

 lpf_ptr[0] = lpf_ext[0];
 lpf_ptr[1] = lpf_ext[1];
 lpf_ptr[2] = lpf_ext[2];
 lpf_ptr[3] = lpf_ext[3];
 lpf_ptr[4] = lpf_ext[4];
 lpf_ptr[5] = lpf_ext[5];
 lpf_ptr[6] = lpf_ext[6];
 lpf_ptr[7] = lpf_ext[7];
 lpf_ptr[8] = lpf_ext[8];

 /*––*/
 /* Read shift argument from user passed location. */
 /*––*/

 shift = lpf_params–>shift;

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

 5-8

 /*––*/
 /* Initialize input stream with the following parameters */
 /* */
 /* External address: ext_ptr */
 /* External size: ext_size */
 /* Internal memory: int_mem */
 /* Internal size: 6 * cols */
 /* Number of bytes / line: cols */
 /* Number of lines/fetch: 1 */
 /* External stride/line: cols */
 /* Sliding window: 3 lines */
 /* Direction: Input stream */
 /*––*/

 err_code = dstr_open(&i_dstr,
 ext_ptr,
 ext_size,
 int_mem,
 (6 * cols),
 cols,
 1,
 cols,
 3,
 (DSTR_INPUT));

 /*––*/
 /* If DEBUG is defined check for any error messages in LOG object */
 /*––*/

 #ifdef DEBUG
 if (err_code)
 {
 LOG_printf(&trace,”Error opening input stream %d \n”,
 err_code);
 }
 #endif

 /*––*/
 /* Initialize output stream with the following parameters */
 /* */
 /* External address: out_ptr */
 /* External size: rows * cols */
 /* Internal memory: corr_ptr */
 /* Internal size: 2 * cols */
 /* Number of bytes/line: cols */
 /* Number of lines: 1 */
 /* External stride: pitch */
 /* Direction: output */
 /*––*/

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

5-9Image Processing Using ImageLIB

 err_code = dstr_open(&o_dstr,
 out_ptr,
 (2 * rows * cols),
 corr_ptr,
 (2 * cols),
 cols,
 1,
 pitch,
 1,
 (DSTR_OUTPUT));

 /*––*/
 /* If DEBUG is defined then echo any error messages to output log */
 /*––*/

 #ifdef DEBUG
 if (err_code)
 {
 LOG_printf(&trace,”Error opening output stream %d \n”,
 err_code);
 }
 #endif

 /*––*/
 /* The following loop iterates rows times and computes 1 line of */
 /* correlation output. */
 /*––*/

 for (i = 0; i < rows; i++)
 {

 /*––*/
 /* in_data is pointer to input buffer */
 /* out_data is pointer to output buffer */
 /*––*/

 in_data = (unsigned char *) dstr_get(&i_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 /*––*/
 /* Perform 3 x 3 correlation algorithm to implement low pass */
 /*––*/

 corr3x3_wr(in_data, out_data, 0, cols, (char *)lpf_ptr, shift);
 out_data[cols – 1] = out_data[cols – 2];
 }

 /*––*/
 /* Commit last output buffer and close input and output streams */
 /*––*/

 dstr_put(&o_dstr);
 dstr_close(&o_dstr);
 dstr_close(&i_dstr);

}

As shown above, every ImageLIB component requires a component_image
file that is used to call it several times to accomplish the algorithm on the entire
image. The number of times, the component is called needs to be tuned based

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

 5-10

on the data bandwidth required for the algorithm to the processing bandwidth.
In this particular case one line of output is processed every time, and the sliding
window moves the input data up one line at a time, bringing the most recent
input line at the bottom of the buffer.

5.2.1 API interface for Image Processing Algorithms

The following code demonstrates the high level function which calls out to each
image processing algorithm. The function img_proc may be called as such or
each individual algorithm within this function can be converted to eXpressDSP
so that it can be invoked by the Imaging Framework [3]. This issue will be ex-
amined later. However, an examination of the code provided below shows the
simplicity with which all algorithms can be relocated on the display window ei-
ther at run-time or compile time. The input image from the IDK hardware is a
640x480 image. Pre-scaling changes the image size to be 320x240. The verti-
cal resizing is achieved by using only the even field, while the horizontal resiz-
ing is achieved by averaging. The information regarding the location and size
of the image is passed in a structure as shown. In addition the pointer to the
internal and external memory space is also stored in a SCRATCH_PAD struc-
ture which is shown below. The code is structured to accomplish the solution
for the stated problem definition using the hierarchy as shown in Figure 5–4.

Figure 5–4. Structuring Algorithms to Accomplish Image Processing Demonstration

Input image
640 x 480
(NTSC)

Pre_scale Image
320 x 240

Copy

Filtering

Edge detection

Thresholding

Output
display
buffer

typedef struct image
{
 unsigned char *img_data;
 int img_cols;
 int img_rows;
}IMAGE;

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

5-11Image Processing Using ImageLIB

typedef struct
{
 char *ext_data;
 int ext_size;
 char *int_data;
 int int_size;
}SCRATCH_PAD;

typedef enum img_type
{
 FLDS,
 PROG
} IMG_TYPE;

With, these structure definitions in place, the code that calls out to each image
processing operation can now be examined. The code shown below sets up
the algorithms to follow the structure outlined in Figure 5–4.

/*––*/
/* Specify the header files of the functions to be used for image processing */
/*––*/

#include ”pre_scale_image.h”
#include ”copy_image.h”
#include ”corr3x3_image.h”
#include ”sobel_image.h”
#include ”threshold_image.h”

/*––*/
/* Specify statistics object conditionally if debug is to be implemented using */
/* BIOS. */
/*––*/

#ifdef _DSP_BIOS_DBG
#include <std.h>
#include <clk.h>
#include <trc.h>
#include <sts.h>
extern far STS_Obj stsLogPrintf;
#endif

/*––*/
/* The following function sets the pointer pointed to by ptr_ptr. It is used by */
/* all the image processing algorithms to set their output pointer. */
/* */
/* void set_ptr(int quadrant, IMAGE *out_img, char **ptr_ptr) */
/* */
/* Arguments: */
/* quadrant: Quadrant number {0, 1, 2, 3} allowed values */
/* out_img: Structure containing parameters of output image */
/* ptr_ptr: Pointer to pointer to store out the output pointer */
/*––*/

void set_ptr(int quadrant, IMAGE *out_img, char **ptr_ptr)
{

 /*––*/
 /* Read the number of columns and rows for the output image from the structure*/
 /* In addition set the pitch to be cols wide. */
 /*––*/

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

 5-12

 int cols = out_img–>img_cols >> 1;
 int rows = (out_img–>img_rows >> 1);
 int pch = out_img–>img_cols;

 /*––*/
 /* By default assume that quadrant is 0 and set output pointer to point here. */
 /* Otherwise compute the cortrect pointer location and set it in the output */
 /* pointer */
 /*––*/

 *ptr_ptr = (char *) out_img–>img_data;
 if (quadrant == 1) *ptr_ptr += cols;
 if (quadrant == 2) *ptr_ptr += (rows * pch);
 if (quadrant == 3) *ptr_ptr += ((rows * pch) + cols);
}

/*––*/
/* Core image processing routine. */
/* */
/* void img_proc(IMAGE *in_image, IMAGE *out_img, SCRATCH_PAD *scratch_pad, */
/* img_type img_type_val, LPF_PARAMS *lpf_params, */
/* THRESH_PARAMS *thresh_params) */
/* */
/* in_image: Structure to the input image */
/* out_img: Structure to the output image */
/* img_type_val: Type of image FLDS or PROG */
/* lpf_params: Parameters to low pass filter */
/* thresh_params: Threshold arguments */
/*––*/

void img_proc(IMAGE *in_image,
 IMAGE *out_img, SCRATCH_PAD *scratch_pad,
 img_type img_type_val, LPF_PARAMS *lpf_params,
 THRESH_PARAMS *thresh_params)
{

 int time;
 int quadrant;
 char *out_ptr;
 int pitch, rows, cols;

 /*–––*/
 /* Set output pointer to point to start of image. Read pitch value , cols */
 /* and rows from the output image. */
 /*–––*/

 out_ptr = (char *) out_img–>img_data;

 pitch= out_img–>img_cols;
 cols = out_img–>img_cols >> 1;
 rows = (out_img–>img_rows >> 1);

 /*–––*/
 /* If DSP_BIOS debug is defined use time object to get statistics */
 /*–––*/

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

5-13Image Processing Using ImageLIB

 #ifdef _DSP_BIOS_DBG
 if (TRC_query(TRC_USER0) == 0)
 {
 time = CLK_gethtime();
 STS_set(&stsLogPrintf, time);
 }
 #endif

 /*–––*/
 /* Perform pre–scaling of image by specifying type of image. */
 /*–––*/

 pre_scale_image(in_image, out_img, scratch_pad, FLDS);

 /*––*/
 /* Copy original image to the third quadrant */
 /*––*/

 quadrant = 3;
 set_ptr(quadrant, out_img, &out_ptr);
 copy_image(scratch_pad, out_img, out_ptr, pitch);

 /*––*/
 /* Perform low pass filtering and copy results to zeroeth quadrant */
 /*––*/

 quadrant = 0;
 set_ptr(quadrant, out_img, &out_ptr);
 conv3x3_image(scratch_pad, out_img, out_ptr, pitch, lpf_params);

 /*––*/
 /* Perform sobel and copy to second quadrant */
 /*––*/

 quadrant = 2;
 set_ptr(quadrant, out_img, &out_ptr);
 sobel_image(scratch_pad, out_img, out_ptr, pitch);

 /*––*/
 /* Perform thresholding and copy to 1st quadrant */
 /*––*/

 quadrant = 1;
 set_ptr(quadrant, out_img, &out_ptr);
 threshold_image(scratch_pad, out_img, out_ptr, pitch, thresh_params);

 /*––*/
 /* If DSP_BIOS_DBG is defined stop accumulating statistics */
 /*––*/

 #ifdef _DSP_BIOS_DBG
 if (TRC_query(TRC_USER0) == 0)
 {
 time = CLK_gethtime();
 STS_delta(&stsLogPrintf, time);
 }
 #endif
}

The relocation of the algorithm results to the appropriate quadrant is per-
formed by the function set_ptr that accepts a quadrant and then sets the ap-

Use of Image Data Manager to Manage Data Flow for ImageLIB Components

 5-14

propriate pointer. Pitch is set to the column width of the display. However this
allows for display techniques like overlay. The quadrant can be passed in as
an array of values that can be changed either at compile time or run time.

Modifying the Application Driver for the Algorithm

5-15Image Processing Using ImageLIB

5.3 Modifying the Application Driver for the Algorithm

Chapter 3 examined the development of application drivers as generic tem-
plates that could be used for image processing algorithms. The problem defini-
tion for the image processing demonstration requires four different images to
be displayed at the same time, with one channel being the pass through. This
requires modifying the generic application driver to produce a 320x240 image
in the case of NTSC. The code to do this is examined in the function
pre_scale_image.c and pre_scale.c. The output image stream needs to be
modified to produce half as many pixels as the input stream. Further, only the
even field or odd field is processed to achieve the reduction in size in the verti-
cal direction. Pixels are averaged along the horizontal direction to get better
quality in the output image. The modified application driver uses the flow chart
defined in section 2.4. the code to open the output stream is changed as fol-
lows, from the application driver for field based processing. Recall that this ap-
plication driver allows users to process multiple lines from a given field at once

 /*––*/
 /* Initialize output stream with the following parameters */
 /* */
 /* External address: ext_scale_start */
 /* External memory size: ext_size */
 /* Internal address: ptr_scale */
 /* Internal size: cols * num_lines */
 /* Number of bytes/line: (cols * num_lines) >> 1 */
 /* Number of lines: 1 */
 /* External memory offset: (cols * num_lines) >> 1 */
 /* Window size: 1 */
 /* Direction: DSTR_OUTPUT */
 /*––*/

 err_code = dstr_open (&o_dstr,
 (void *) (ext_scale_start),
 (ext_size),
 (void *) (ptr_scale),
 (cols * num_lines),
 (cols * num_lines) >> 1,
 1,
 (cols * num_lines) >> 1,
 (1),
 (DSTR_OUTPUT));

Notice that this modified initialization accounts for the fact that the output
stream produces half as much data as the input stream.

The next step is to issue calls to the input and output stream to accomplish the
task of scaling down the image. The code to accomplish this is shown below:

Modifying the Application Driver for the Algorithm

 5-16

 /*––*/
 /* The following loop iterates through all the lines and calls the */
 /* pre_scale code that scales the image from 640 by 480 to 340 by 240 */
 /* in_data is the pointer to the present input buffer and out_data is */
 /* the pointer to the present output buffer */
 /*––*/

 for (i = 0; i < (rows / num_lines); i++)
 {
 in_data = (unsigned char *) dstr_get_2D(&i_dstr);
 out_data = (unsigned char *) dstr_put(&o_dstr);

 pre_scale(in_data, out_data, (cols * num_lines));
 }

Once all the required data for the input and output stream has been fetched
and processed, the input and output streams need to be closed. This is done
using the following code. As in previous application driver examples, one extra
call to the put function is required to commit the last set of results to memory

 /*––*/
 /* Commit the last output buffer by isssuing dstr_put on output side */
 /* Also close the input and output streams */
 /*––*/

 dstr_put(&o_dstr);
 dstr_close(&i_dstr);
 dstr_close(&o_dstr);

This completes the process of modifying the generic templates as required for
this application. The actual function that does the scaling in the horizontal di-
mension is shown below:

/*–––*/
/* void pre_scale(unsigned char *in_data, unsigned char *out_data, */
/* int num_lines) */
/* in_data: pointer to input buffer */
/* out_data: pointer to output buffer */
/* num_lines: number of pixels to process */
/*–––*/

void pre_scale(unsigned char *in_data, unsigned char *out_data,
 int num_lines)
{

 /*––*/
 /* in_ptr: int pointer to load pixels as integer values */
 /* iters: num_lines >> 2 since four pixels are processed together */
 /*––*/

 unsigned int *in_ptr = (unsigned int *) (in_data);
 int iters = (num_lines >> 2);
 int i;

 /*––*/
 /* Mask to extract pairs of bytee. mask_3x1x extracts third and first */
 /* byte. Similarly mask_x2x0 extracts 2nd and 0th byte */
 /*––*/

Modifying the Application Driver for the Algorithm

5-17Image Processing Using ImageLIB

 unsigned int mask_3x1x = 0xFF00FF00;
 unsigned int mask_x2x0 = 0x00FF00FF;

 /*––*/
 /* pix_x3210: int containing four pixels */
 /* pix_x3x1: integer containing third and first pixels */
 /* pix_x2x0: integer containing second and 0th pixels */
 /*––*/

 unsigned int pix_3210;
 unsigned int pix_x3x1;
 unsigned int pix_x2x0;
 unsigned int pix_avg;

 unsigned short pix_lo;
 unsigned short pix_hi;

 /*––*/
 /* The following loop iterates and performs pre–scaling */
 /*––*/

 for (i = 0; i < iters; i++)
 {

 /*––*/
 /* pix_x3210 performs word wide loads of the pixels */
 /* pix_x3x1 contains the extercated 3rd and 1st pixels */
 /* pix_x2x0 contains second and 0th pixels */
 /*––*/

 pix_3210 = in_ptr[i];
 pix_x3x1 = (pix_3210 & mask_3x1x) >> 8;
 pix_x2x0 = (pix_3210 & mask_x2x0);

 /*––*/
 /* pix_avg: perform averaging by add2 instruction */
 /* Extract lower and higher halves into pix_lo and pix_hi and */
 /* scale by 0.5 */
 /*––*/

 pix_avg = _add2(pix_x3x1, pix_x2x0);
 pix_lo = (pix_avg & 0x0000FFFF) >> 1;
 pix_hi = _mpyhuls(pix_avg, 1) >> 1;

 /*––*/
 /* Store out the lower and higher averages into output array */
 /*––*/

 out_data[2*i] = (unsigned char) pix_lo;
 out_data[2*i+1] = (unsigned char) pix_hi;
 }
 }

The pre_scale function accesses the input data using word wide accesses and
performs averaging of successive pixels to produce an output image. The re-
sulting output pixels are limited to a byte range and stored out.

Algorithm Integration for Initial Testing

 5-18

5.4 Algorithm Integration for Initial Testing

With all the kernel wrapper functions and the modified application driver file
completed, the different pieces are now ready to be put together to accomplish
the algorithm. For the purposes of initial testing all four iamge processing algo-
rithms are scheduled as one task under BIOSII. This will be modified in the next
chapter when they are integrated to be eXpressDSP-compliant. The function
“img_proc” shown in section 5.3.2 needs to be called for every new frame from
the capture hardware. This is implemented by calling it from the main task
“tskmainFunc” that has been set up. The code discussed in this section is in-
tended for merely performing an initial evaluation and testing of the image
processing algorithm. The code that implements this is shown below.

/***/
/* Copyright (C) 2000 Texas Instruments Incorporated. */
/* All Rights Reserved */
/*–––*/
/* FILENAME...... main.c */
/* */
/* Function: */
/* This file is intended to serve as a generic template file for eval– */
/* uating various imaging applications, on the Imaging TDK hardware. This code */
/* was initially written to demonstrate a straight pass–through demo for gray */
/* scale and color images. */
/* */
/* There are four main functions: */
/* */
/* a) void main() : */
/* The main function initializes Chip Support Library. It opens */
/* a DMA channel for 2D transfers using the DAT_open call. It also resets the cap– */
/* ture and display drivers. */
/* */
/* b) void tskMainFunc: */
/* This is a task that is scheduled in BIOS to run using the */
/* task manager. In this example two functions are placed within this task. */
/* These are the grayscale() function and color() function. */
/* */
/* c) void grayscale(): A function that displays captured image as gray scale */
/* image. */
/* */
/* d) void color(): A function that displays captured image in color as a packed */
/* RGB in 565 format */
/* */
/* NOTES: */
/* */
/* Make sure that DSP/BIOS HWI is configured for the video interrupts. */
/* HWI5 –> _VCAP_isr */
/* HWI6 –> _VDIS_isr */
/* Make sure ”Use Dispatcher” is checked for each one. */
/* */
/***/

/*–––*/
/* DSP/BIOS includes hedaer files */
/*–––*/

Algorithm Integration for Initial Testing

5-19Image Processing Using ImageLIB

#include <std.h>
#include <log.h>
#include <swi.h>
#include <sem.h>
#include <clk.h>

/*–––*/
/* CSL includes */
/*–––*/

#include <csl.h>
#include <irq.h>
#include <dat.h>
#include <cache.h>

/*–––*/
/* Capture/Display Hardware Application includes */
/*–––*/

#include ”vcap.h”
#include ”vdis.h”

/*–––*/
/* ImageLIB component colour space conversion header file includes */
/*–––*/

#include ”ycbcr422pl_to_rgb565_h.h”
#include ”img_proc.h”
#include ”lpf_params.h”
#include ”thresh_params.h”

/*–––*/
/* VCAP_Frame is the capture hardware structure that contains pointers to luma/chr */
/* oma. output array is a pointer that will be used to write output results for */
/* display. */
/*–––*/

static VCAP_Frame *input;
static void *output;

/*–––*/
/* The following arrays contain Y, Cr and Cb info and are in external memory as */
/* the .data section is defined to be in external memory in the .cdb file. They */
/* are declared to be aligned on a 128 byte boundary. */
/* */
/* ybuff: contains luma data of size 640 by 480 */
/* crbuff: chroma red data of size 320 by 480 */
/* cbbuff: chnroma blue data of size 320 by 480 */
/* */
/*–––*/

#pragma DATA_ALIGN(ybuff,128);
#pragma DATA_ALIGN(crbuff,128);
#pragma DATA_ALIGN(cbbuff,128);
static char ybuff[640*480];
static char crbuff[320*480];
static char cbbuff[320*480];
#pragma DATA_SECTION(ext_mem,”.image:ext_sect”);
#pragma DATA_SECTION(int_mem,”.chip_image:int_sect”);
#pragma DATA_ALIGN(ext_mem, 8);
#pragma DATA_ALIGN(int_mem, 8);
char ext_mem[246 * 320];
char int_mem[16 * 240];

Algorithm Integration for Initial Testing

 5-20

/*–––*/
/* Function declarations for greyscale routines */
/*–––*/

static void greyscale();

/*––*/
/* Main function */
/*––*/

void main()
{

 /*––*/
 /* Initialize CSL and open the next available DMA channel for data transfer*/
 /*––*/

 CSL_Init();
 DAT_Open(DAT_CHAANY, DAT_PRI_LOW, DAT_OPEN_2D);

 CACHE_Flush(CACHE_L2ALL, 0x0, 0x0);

 /*––*/
 /* Reset the display and capture hardware by calls to vdis and vcap */
 /*––*/

 VDIS_config(VDIS_RESET);
 VCAP_config(VCAP_RESET);
}

/*––*/
/* Algorithm to be executed is setup as a task under BIOS which gets scheduled*/
/* by the TASK Manager. */
/*––*/

void tskMainFunc()
{

 /*–––*/
 /* Perform greyscale algorithm followed by color algorithm */
 /*–––*/

 greyscale();

}

/*––*/
/* This is the greyscale algorithm where the luma channel alone is made use of*/
/*––*/

void greyscale()
{
 int hres;
 int vres;
 int frame_cnt;

 IMAGE in_image;
 IMAGE out_image;
 SCRATCH_PAD scratch_pad;
 LPF_PARAMS lpf_params;
 THRESH_PARAMS thresh_params;

 /*––*/
 /* Configure capture hardware for square pixel and siplay hardware for */
 /* gray scale images. */
 /*––*/

Algorithm Integration for Initial Testing

5-21Image Processing Using ImageLIB

 VCAP_config(VCAP_SQP);
 VDIS_config(VDIS_640X480_GS);

 /*––*/
 /* Obtain the default horizontal resolution, vertical resolution, bits */
 /* per pixel and pitch settings for gray scale mode */
 /*––*/

 hres = VDIS_settings.hres;
 vres = VDIS_settings.vres;

 /*–––*/
 /* The following loop, iterates for a set number of frames (300) and */
 /* implements the gray scale display. */
 /*–––*/

 for(frame_cnt = 0; frame_cnt < 24 * 60 * 60; frame_cnt ++)
 {

 /*–––*/
 /* The current set of input and output pointers are obtained by */
 /* calls to the getFrame and toggleBuffs routine. By using the */
 /* SYS_FOREVER flag the function blocks until a new frame arrives */
 /* By setting the output side argument to 0, the next available */
 /* buffer is returned independent of the display event. */
 /* ”input” and ”output” are pointers to input frame and output */
 /* data. */
 /*–––*/

 input = VCAP_getFrame(SYS_FOREVER);
 output = VDIS_toggleBuffs(0);

 in_image.img_data = input–>y1;
 in_image.img_cols = hres;
 in_image.img_rows = vres/2;

 out_image.img_data = output;
 out_image.img_cols = hres;
 out_image.img_rows = vres;

 /*–––*/
 /* Two types of scratch pad memory are used, external and internal */
 /* memory. To pass this information to the application the scratch */
 /* pad structure is set with the addresses of external and internal*/
 /* memory and their corresponding sizes. */
 /*–––*/

 scratch_pad.ext_data = ext_mem;
 scratch_pad.ext_size = sizeof(ext_mem);
 scratch_pad.int_data = int_mem;
 scratch_pad.int_size = sizeof(int_mem);

 /*–––*/
 /* The following parameters are needed by the low pass filter, mask*/
 /* of filter coefficients and the shift value to be used. */
 /*–––*/

 lpf_params.mask = (unsigned char *) lpf_ext;
 lpf_params.shift = shift_ext;

 /*––*/
 /* The thresholding algorithm needs the threshold value as input */
 /*––*/

 thresh_params.threshold = thresh_ext;

Algorithm Integration for Initial Testing

 5-22

 /*––*/
 /* Call Image Processing demo here. This might break out into 4 */
 /* seperate calls to each of the algorithms once it is DAISIZED. */
 /* The input image, output image, scratchpad, low pass parameters */
 /* and threshold values are passed as arguments */
 /*––*/

 img_proc(&in_image, &out_image, &scratch_pad, FLDS, &lpf_params,
 &thresh_params);

 }

 /*–––*/
 /* Reset the capture and display hardware. */
 /*–––*/

 VDIS_config(VDIS_RESET);
 VCAP_config(VCAP_RESET);
}

Notice that the grey_scale function gets scheduled by the BIOSII scheduler to
run, whenever there is a new frame of input data to process. This in turn calls
the img_proc algorithm that performs the four different image processing algo-
rithms. This concludes the initial testing and validation of the image process-
sing algorithm.

Performance Considerations

5-23Image Processing Using ImageLIB

5.5 Performance Considerations

The image processing demonstration using ImageLIB was developed to illus-
trate the power of the combined use of several key software and hardware that
TI provides to accelerate image processing applications. The principle behind
these software libraries was ease of use and shorter development cycles to
initiate rapid prototyping on the TMS320C6x architecture. The performance
table presented below has four columns of data:

1) Raw ImageLIB performance

2) Expected Performance due to ImageLIB + Image Data Manager functions

3) Actual Measured Performance

4) Performance Percentage

The cycle counts measured for performance on silicon was the number of
cycles taken to execute the entire algorithm on the whole image. The expected
performance does not include the additional cycles for opening streams and
the set-up code for the algorithm. The expected number of cycles is defined
as the number of cycles that are required for data transfer and performing the
algorithm on the whole image once the streams have all been initialized.

The performance percentage is close to the theoretical estimates when the
processing time is a significant percentage of the algorithm as compared to the
data transfer cycles. When this is not true, the data transfer cycles tend to pre-
dominate. For example in the case of the median_3x3 algorithm it takes nine
cycles to produce one output pixel while in the case of the threshold algorithm
it takes 0.56 cycles for one output pixel. In all, the image processing algorithms
considered in this application, report the number of output pixels is the same
as the number of input pixels. Therefore, there is an eighteen-fold difference
in processing between some algorithms. To hide the short processing times
of some of the algorithms, multiple output lines are processed together to al-
leviate performance; for example, the threshold algorithm works to produce six
output lines at a time, while the convolution algorithm produces one output line
at a time.

Performance Considerations

 5-24

The following performance figures are for the image processing demo algo-
rithms that used an image size of [320 x 240]. In estimating the theoretical per-
formance in column four for these algorithms, 360 cycles of overhead were
added fro each DSTR_get and DSTR_put call. This overhead for the Image
Data Manager routines was obtained by actual measurement. The second col-
umn contains the ImageLIB cycle count formula documented in the source and
header files in the library. Although the median function is not part of the differ-
ent tasks in the image processing demo, the performance for this ImageLIB
kernel was also benchmarked to illustrate the need for balancing data transfer
bandwith to computational bandwidth.

Table 5–1. Comparison of Performance Obtained with Theoretical Performance

Algorithm ImageLIB Formula ImageLIB
Expected

Cycles
Measured

Cycles

Performance
(Expected) %/
Measured %

Conv_3x3 (4.5 * cols + 91) * rows 367440 488480 605451 81%

Median (9 * cols +55) rows 70440 790800 910805 86%

Sobel (3 * cols + 34) *(rows –2) 238560 315360 461372 69%

Threshold (0.565 *cols + 24) 49152 58752 111255 53%

Consider the threshold example:

The raw performance for just the algorithm for a 320 by 240 image:

(0.565 * 320 + 24) * 240 = 49152 cycles

If only 1 line of the output image were to be processed for every iteration of the
loop, 240 DSTR_get and DSTR_put calls would be needed. The additional
cycles required for this would be:

(240 * 360) = 86400 cycles.

Clearly a significant portion of the cycles is consumed in data transfer and not
in the processing itself. In this case the total number of expected cycles would
be:

86400 cycles (data transfer) + 49152 cycles (processing) = 135552 cycles.

The actual measured performance is significantly better than this because six
lines are processed at a time, therefore the raw performance in this scenario
is:

(0.565 * 320 * 6 + 24) * 40 = 44352 cycles (smaller processing time)

Performance Considerations

5-25Image Processing Using ImageLIB

(360 * 240) /6 = 14400 cycles (data transfer)

Therefore the total cycles to be expected is:

44352 cycles (processing) + 14400 cycles (data transfer) = 58752 cycles

The performance data needs to be studied with the following caveats in mind:

� The image processing and wavelet demos were put together using Image
Data Manager libraries in conjunction with CSL to serve as a rapid proto-
typing platform capable of achieving real-time performance with the short-
est development time possible.

� The image processing demo does not pipeline individual algorithms as is
typical in an end application, and issues separate data transfer requests
for the same input data used by several algorithms.

� The Image Data Manager libraries can be optimized further to take advan-
tage of the DMA/EDMA routines of CSL rather than the DAT routines that
are currently used.

� The additional cycles required for stream initialization and control code be-
fore the processing loop were not added to the estimated cycle count.

� Even with all these caveats and limitations, an average performance of 72
% was obtained on six complete algorithms, which is an impressive level
of performance for a rapid prototyping platform.

Conclusions

 5-26

5.6 Conclusions

This chapter examined the use of ImageLIB to perform various common image
processing tasks. The programmer is advised to consult the user’s guide to get
a complete reference of the available image processing functions under
ImageLIB. A complete image processing demonstration was then created, us-
ing three kernels that are available in ImageLIB. The neessary data flow for
these kernels was provided through IDM. This application required an image
size, which required the modifcation of the generic application drivers, pro-
vided in Chapter 3. This chapter also showed how simple modifications to the
generic application drivers can achieve the required objective. In addition, it
examined putting all these constituent pieces together, and perfoming initial
evaluation and testing of the algorithm. The validated algorithm will be con-
verted to be eXpressDSP-compliant in the next chapter. The integration of this
eXpressDSP-compliant algorithm into the Channel Manager framework will
be discussed in Chapter 7.

6-1

Integration of an Application into the
Imaging Framework

We have discussed how to create a standalone algorithm using the IDK hard-
ware in the previous chapters. While a standalone algorithm can be very useful
for prototyping, applications usually require an application framework. In DSP
systems, the application framework is typically a series of software modules
that manage data and algorithms. Software frameworks allow a multi-tasking
environment with different priorities for different tasks. The software frame-
work allows modular addition and deletion of different algorithms in the ap-
plication without reworking the entire system. A software framework, the
Channel Manager (CM) is provided by Texas Instruments (TI) that allows a
multi-tasking environment. In this chapter, we will integrate the standalone ex-
ample from the prior chapters into the Channel Manager (CM) software frame-
work provided by TI.

Topic Page

6.1 Overview 6-2.

6.2 Channel Manager (CM) Overview 6-4.

6.3 Verify eXpressDSP Compliance of Rules and Guidelines 6-6.

6.4 Create eXpressDSP Interfaces 6-7.

6.5 Create Main Function for Multi-Tasking Environment 6-17.

6.6 Conclusions 6-28.

Chapter 6

 6-2

6.1 Overview

The recommended algorithm flow for the IDK is shown in Figure 6–1. The pre-
voius chapters have developed the procedure to prototype and verify correct-
ness of the algorithm. This chapter will discuss the remaining steps:

� Providing eXpressDSP Interface and Verify Compliancy

� Integrate into Channel Manager Framework

The steps for completing these last two tasks are:

1) Verify eXpressDSP compliance of rules and guidelines

2) Create eXpressDSP Interfaces

3) Create main function for multi-tasking environment

4) Invoke CM function calls to implement algorithm

6-3

Figure 6–1. Recommended Algorithm Development Flow for IDK

Problem statement

Identify constituent of the algorithm

Can I use
ImageLIB
routines?

Use compiler/assembly optimizer
and develop own implementation

Use IDM to wrap around the necessary

Prototype and verify correctness

Provide eXpressDSP interface

Integrate into

Completed application

data flow required by the algorithm

and verify compliancy

Channel Manager Framework

that others can use

No

Yes

 6-4

6.2 Channel Manager (CM) Overview

Before we integrate an algorithm into the software framework, it is useful to re-
view the CM algorithm framework. Specific detail of the CM Application frame-
work is available in the C6000 Imaging Development Kit Application Frame-
work Application. The CM algorithm consists of three types of tasks as shown
in Figure 6–2:

� I/O tasks for synchronization between algorithms and data movement for
algorithms.

� Channel tasks provide an instance of each channel object for algorithm
execution

� Message-handling tasks allow communication between the Host GUI of
CCS to the target DSP.

Figure 6–2. IDK Channel Manager Framework

 RTDX

 Application Framework

Passthask

Host GUI (CCS Plug–in)

Channel Task

Channel Manager

Capture/Display DriverAlgorithms

CSL + DSP BIOS ΙΙ

I/O Task

Message Handling Task

These tasks provide abstraction to access to the algorithms, capture and dis-
play drivers and the hardware of the DSP through the use of the Chip Support
Library (CSL) and the DSP/BIOS kernal. The CM framework allows platform

6-5

agnostic application development. To migrate between devices, the underly-
ing pieces of the CSL and device specific drivers must be altered, but not the
framework. In the example code provided, I/O tasks and Channel tasks are im-
plemented for the framework. Additional information about message-handling
tasks is available in the C6000 Imaging TDK Application Framework applica-
tion note although they are not implemented in this example for simplicity of
the algorithm development. The CM framework uses semaphores and the
tasks described to schedule the application including the algorithm execution
and data capture and display. The main application file will be changed to ac-
comadate the methodology shift from a roundrobin approach used in the stan-
dalone example to the priority based scheme used by the CM algorithm frame-
work.

To use the Channel Manager software framework, three requirements must
be met. According to the C6000 Imaging TDK Application Framework applica-
tion note, the requirements to integrate an algorithm into the channel manager
are:

1) The algorithm works on a C6711 DSK (standalone example)

2) The algorithm is eXpressDSP-compliant (implements the IALG interface
and observe all rules required by the eXpress DSP Algorithm Standard)

3) The algorithm provides the Channel Manager with a function pointer that
points to its processing function of the form, void* XXXApply(IALG_Han-
dle handle, void* in, void* out)

The starting point for algorithm integration is that the algorithm operates as a
standalone system as described in the earlier chapters of the IDK Program-
mer’s Guide. Fulfilling the second two requirements will be described in detail
using the Image Processing demonstration example used in previous chap-
ters of the IDK Programmer’s Guide.

 6-6

6.3 Verify eXpressDSP Compliance of Rules and Guidelines

The algorithm must be eXpressDSP-compliant to be used in the channel man-
ager software framework. The software programming guidelines for eX-
pressDSP compliance is covered in great detail in other documents including:

� TMS320 DSP Algorithm Standard API Reference (Literature number
SPRU360A)

� TMS320 DSP Algorithm Standard (Literature number SPRA581A)

� TMS320 DSP Algorithm Developer’s Guide (Literature number
SPRU424)

� TMS320 DSP Algorithm Standard Rules and Guidelines (Literature num-
ber SPRU352)

� Using the TMS320 DSP Algorithm Standard in a Static DSP System
(Literature number SPRU577A)

� Using the TMS320 DSP Algorithm Standard in a Dynamic DSP System
(Literature number SPRU580A)

� Making DSP Algorithms Compliant with the TMS320 DSP Algorithm Stan-
dard (Literature number SPRA579A)

For the purpose of this document, it is assumed that the algorithm is compliant
with the eXpress DSP Algorithm Standard Rules and Guidelines. The eX-
pressDSP interfaces can be generated using the eXpressDSP template gen-
erator tool provided in Code Composer Studio� (CCS). This tool generates
the different files required for providing the eXpressDSP wrapper functions.
The standalone image processing algorithms used in the previous chapters
is compliant with the algorithm standard. Once compliance of the algorithm is
confirmed, the interfaces can be created using the eXpressDSP template gen-
erator tool in CCS.

6-7

6.4 Create eXpressDSP Interfaces

The steps of creating the eXpressDSP interfaces are shown using the standa-
lone convolution 3x3 algorithm used in the image processing example. The
eXpressDSP interfaces are created using a eXpressDSP Template Tool pro-
vided in TI’s integrated development environment, Code Composer Studio
(CCS). The tool is used to generate the outline of code required for the inter-
faces. The files are updated with algorithm specific code. A step by step guide
is detailed in the TMS320 DSP Algorithm Developer’s Guide (literature num-
ber SPRU424). Refer to the application note for additional detail. This example
is not meant to replace eXpress DSP Algorithm Standard documents, but is
designed to build an example application as a guide. The image processing
example used here is built using TI C6000 Code Composer Studio v2.

6.4.1 eXpressDSP Template Tool

The first step in creating the eXpressDSP interfaces is to use the eXpressDSP
Template Tool. The tool can be accessed from the CCS v2 toolbar by selecting
Tools –> Algorithm Standard –> Template Code Generator. The inputs to the
tool are determined by examining the algorithm. For more information on
creating the eXpressDSP interfaces, refer to TMS320 DSP Algorithm Devel-
oper’s Guide (Literature number SPRU424).

For the example algorithm of CONV3X3 the inputs to the eXpressDSP Tem-
plate Tool are:

Table 6–1. User Inputs to eXpressDSP Template Code Generator

eXpressDSP Tool Field Example Input Description

Algorithm Name CONV3X3 The naming convention of eXpressDSP
requires that the algorithm name be in
all capital letters.

Vendor TI

Project locations location newly generated files placed
(usually specifc for each algorithm)

Instance Creation
Parameters

XDAS_Int32 pitch
XDAS_Int8* lpf_coeffs
XDAS_Int32 shift

These parameters are initialized at
create time. When the algorithm is
created space is reserved for these
parameters.

 6-8

Table 6–1. User Inputs to eXpressDSP Template Code Generator (Continued)

eXpressDSP Tool Field DescriptionExample Input

Status Creation
Parameters

XDAS_Int32 pitch
XDAS_Int8* lpf_coeffs
XDAS_Int32 shift

These parameters can be read and
written to during execution

Algorithm Methods XDAS_Int32 apply(XDAS_Int8* in,
XDAS_Int8* out)
XDAS_Bool control(ICONV3X3_Cmd
cmd, ICONV3X3_Status *status)

The application level interfaces for
algorithms include the apply method
and a control method to allow
integration into the CM framework

Check all three boxes for Generate These files:

� Algorithm Interface Files(I*.[ch] files)

� API Library Stubs (module [ch] files)

� Algorithm Implementation Stubs (module_vendor*.* files)

When the inputs are complete, select the Build files button.

The tool creates the following nine files in the project locations directory:

Table 6–2. List of Files Generated by eXpressDSP Template Code Generator

File Description Modified

(a) Application Framework

conv3x3.c implementation of API concrete functions no

conv3x3.h API concrete interface definitions no

(b) Module Specific Interface

iconv3x3.c definition of default parameter structure settings yes

iconv3x3.h abstract interface definition header yes

(c) Algorithm Specific Interface

conv3x3_ti.c client specific algorithm functions yes

conv3x3_ti.h client specific implementation header file used in ap-
plication

no

conv3x3_ti_vtab.c function v-table definitions (properities of each instance) yes

CONV3X3.i lists the inputs to the eXpressDSP Template tool no

Project.mak no

6-9

6.4.2 Modify eXpressDSP Template Tool Output Files

The second step to create the eXpressDSP interfaces is to modify the output
files for the specific algorithm.

iconv3x3.c and iconv3x3.h

The module specific interface files, iconv3x3.c and iconv3x3.h files must be
modified. The iconv3x3.c file is modified to set the default values for parame-
ters for the algorithm objects. If this file is not modified the default values for
all parameters will be zero. In this example, the low pass filter coefficents are
modified and the shfit and pitch parameters are set as shown below.

 /*

 * ======== iconv3x3.c ========

 * This file defines the default parameter structure for iconv3x3.h

 */

#include <std.h>

#include <iconv3x3.h>

/*

 * ======== conv3x3_PARAMS ========

 * This constant structure defines the default parameters for conv3x3 objects

 */

char lpf_ext[3][9] = {

 { 1, 2, 1, 2, 4, 2, 1, 2, 1},

 { –1, –1, –1, –1, 8, –1, –1, –1, –1},

 { –1, –1, –1, –1, 9, –1, –1, –1, –1},

};

#define shift_ext1 4

#define shift_ext2 0

#define shift_ext3 0

const int shift_ext[3] = {shift_ext1, shift_ext2, shift_ext3};

ICONV3X3_Params ICONV3X3_PARAMS = {

 sizeof(ICONV3X3_Params),

 640, /* int pitch; */

 (char *)lpf_ext[0], /* char* lpf_coeffs; */

 shift_ext1 /* int shift; */

};

The iconv3x3.h file is modified include the xdas.h file that provides the xdas
data types for the processor that were used as inputs to the eXpressDSP tem-
plate generator tool. The updated file is shown below.

 6-10

/*
 * ======== iconv3x3.h ========
 * ICONV3X3 Interface Header
 */
#ifndef ICONV3X3_
#define ICONV3X3_

#include <ialg.h>
#include <xdas.h>

/*
 * ======== ICONV3X3_Handle ========
 * This handle is used to reference all CONV3X3 instance objects
 */
typedef struct ICONV3X3_Obj *ICONV3X3_Handle;

/*
 * ======== ICONV3X3_Obj ========
 * This structure must be the first field of all CONV3X3 instance objects
 */
typedef struct ICONV3X3_Obj {
 struct ICONV3X3_Fxns *fxns;
} ICONV3X3_Obj;

/*
 * ======== ICONV3X3_Status ========
 * Status structure defines the parameters that can be changed or read
 * during real–time operation of the algorithm.
 */
typedef struct ICONV3X3_Status {
 Int size; /* must be first field of all status structures */
 XDAS_Int32 pitch;
 XDAS_Int8* lpf_coeffs;
 XDAS_Int32 shift;

} ICONV3X3_Status;
/*
 * ======== ICONV3X3_Cmd ========
 * The Cmd enumeration defines the control commands for the CONV3X3
 * control method.
 */
typedef enum ICONV3X3_Cmd {
 ICONV3X3_GETSTATUS,
 ICONV3X3_SETSTATUS
} ICONV3X3_Cmd;

/*
 * ======== ICONV3X3_Params ========
 * This structure defines the creation parameters for all CONV3X3 objects
 */
typedef struct ICONV3X3_Params {
 Int size; /* must be first field of all params structures */
 XDAS_Int32 pitch;
 XDAS_Int8* lpf_coeffs;

6-11

 XDAS_Int32 shift;

} ICONV3X3_Params;

/*
 * ======== ICONV3X3_PARAMS ========
 * Default parameter values for CONV3X3 instance objects
 */
extern ICONV3X3_Params ICONV3X3_PARAMS;

/*
 * ======== ICONV3X3_Fxns ========
 * This structure defines all of the operations on CONV3X3 objects
 */
typedef struct ICONV3X3_Fxns {
 IALG_Fxns ialg; /* ICONV3X3 extends IALG */
 XDAS_Bool (*control)(ICONV3X3_Handle handle, ICONV3X3_Cmd cmd,
ICONV3X3_Status *status);
 XDAS_Int32 (*apply)(ICONV3X3_Handle handle, XDAS_Int8* in,
XDAS_Int8* out);

} ICONV3X3_Fxns;

#endif /* ICONV3X3_ */

conv3x3_ti_vtab.c

The file conv3x3_ti_vtab.c is renamed conv3x3_TI_ialgvt.c.

conv3x3_ti.c

The third file that must be modified is the conv3x3_ti.c file. The tool creates the
outline of the implementation of algorithm functions for the eXpressDSP inter-
faces, but the algorithm specific information must be added.

In the conv3x3 algorithm example, the changes to the conv3x3_ti.c file as
shown in the sample code are:

� The file needs to be renamed conv3x3_TI_ialg.c.

� Add algorithm specfic header files.

� Add the object data types required by the algorithm to the
CONV3X3_TI_Obj structure.

� Enter the memory requirements for the algorithm in the CONV3X3_TI_al-
loc() function.

� Update CONV3X3_TI_free() function to include additional memory speci-
fied in CONV3X3_TI_alloc() function.

 6-12

� Add calls to the conv3x3 algorithm initialization routine to the
CONV3X3_TI_initObj() function.

� Update CONV3X3_TI_control() function for algorithm specific imple-
mentation.

� Update CONV3X3_TI_apply() function for algorithm specific implementa-
tion.

In this conv3x3 example, the following functions are not implemented:

� CONV3X3_TI_activate

� CONV3X3_TI_deactivate

� CONV3X3_TI_exit

� CONV3X3_TI_init

� CONV3X3_TI_moved

/*
 * ======== Conv3x3_ti.c ========
 * Implementation of the CONV3X3_TI.h interface; TI’s implementation
 * of the ICONV3X3 interface.
 */
#pragma CODE_SECTION(CONV3X3_TI_alloc, ”.text:algAlloc”)
#pragma CODE_SECTION(CONV3X3_TI_free, ”.text:algFree”)
#pragma CODE_SECTION(CONV3X3_TI_initObj, ”.text:algInit”)
#pragma CODE_SECTION(CONV3X3_TI_init, ”.text:init”)
#pragma CODE_SECTION(CONV3X3_TI_exit, ”.text:exit”)

#include <std.h>
#include <conv3x3.h>
#include <iconv3x3.h>

#include <conv3x3_ti.h>

#include ”img_proc.h”
#include ”conv3x3_image.h”

/*
 * ======== CONV3X3_TI_Obj ========
 */
typedef struct CONV3X3_TI_Obj {
 IALG_Obj alg; /* MUST be first field of all CONV3X3 objs
*/
 /*! TODO: add custom fields here !*/
 SCRATCH_PAD scratch_pad;
 unsigned char* mask;
 int shift;
 int pitch;
 void *base[2];

6-13

} CONV3X3_TI_Obj;

/*
 * ======== CONV3X3_TI_activate ========
 * Activate our object; e.g., initialize any scratch memory required
 * by the CONV3X3_TI processing methods.
 */
Void CONV3X3_TI_activate(IALG_Handle handle)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;

 /*! TODO: implement algActivate !*/
}

/*
 * ======== CONV3X3_TI_alloc ========
 * Return a table of memory descriptors that describe the memory needed
 * to construct a CONV3X3_TI_Obj structure.
 */
Int CONV3X3_TI_alloc(const IALG_Params *conv3x3Params, IALG_Fxns **fxns,
IALG_MemRec memTab[])
{
 const ICONV3X3_Params *params = (Void *)conv3x3Params;

 /*! TODO: implement algAlloc !*/

 if (params == NULL) {
 params = &ICONV3X3_PARAMS; /* set default parameters */
 }

 /* Request memory for CONV3X3 object */
 memTab[0].size = sizeof(CONV3X3_TI_Obj);
 memTab[0].alignment = 0;
 memTab[0].space = IALG_EXTERNAL;
 memTab[0].attrs = IALG_PERSIST;

 memTab[1].size = (16 * 240);
 memTab[1].alignment = 4;
 memTab[1].space = IALG_DARAM0;
 memTab[1].attrs = IALG_SCRATCH;

 return (2);
}

/*
 * ======== CONV3X3_TI_deactivate ========
 * Deactivate our object; e.g., save any scratch memory required
 * by the CONV3X3_TI processing methods to persistent memory.
 */
Void CONV3X3_TI_deactivate(IALG_Handle handle)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;
 /*! TODO: implement algDeactivate !*/
}

 6-14

/*
 * ======== CONV3X3_TI_exit ========
 * Exit the CONV3X3_TI module as a whole.
 */
Void CONV3X3_TI_exit(Void)
{
 /*! TODO: implement module exit !*/
}

/*
 * ======== CONV3X3_TI_free ========
 * Return a table of memory pointers that should be freed. Note
 * that this should include *all* memory requested in the
 * CONV3X3_TI_alloc operation above.
 */
Int CONV3X3_TI_free(IALG_Handle handle, IALG_MemRec memTab[])
{
 Int n;
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;

 /*! TODO: implement algFree !*/

 n = CONV3X3_TI_alloc(NULL, NULL, memTab);
 memTab[0].base = conv3x3–>base[0];
 memTab[1].base = conv3x3–>base[1];

 return (n);
}

/*
 * ======== CONV3X3_TI_init ========
 * Initialize the CONV3X3_TI module as a whole.
 */
Void CONV3X3_TI_init(Void)
{
 /*! TODO: implement module init !*/
}

/* ======== CONV3X3_TI_initObj ========
 * Initialize the memory allocated for our instance.
 */
Int CONV3X3_TI_initObj(IALG_Handle handle,
 const IALG_MemRec memTab[], IALG_Handle p, const IALG_Params
*conv3x3Params)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;
 const ICONV3X3_Params *params = (Void *)conv3x3Params;

 /*! TODO: implement algInit !*/
 if (params == NULL) {
 params = &ICONV3X3_PARAMS; /* set default parameters */
 }
 conv3x3–>scratch_pad.ext_size = (320*246);
 conv3x3–>scratch_pad.int_data = memTab[1].base;
 conv3x3–>scratch_pad.int_size = (16*240);

6-15

 conv3x3–>pitch = params–>pitch;
 conv3x3–>mask = params–>lpf_coeffs;
 conv3x3–>shift = params–>shift;
 conv3x3–>base[0] = memTab[0].base;
 conv3x3–>base[1] = memTab[1].base;
 return (IALG_EOK);
}

/* ======== CONV3X3_TI_moved ========
 * Fix up any pointers to data that has been moved by the client.
 */
Void CONV3X3_TI_moved(IALG_Handle handle,
 const IALG_MemRec memTab[], IALG_Handle p, const IALG_Params
*conv3x3Params)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;
 const ICONV3X3_Params *params = (Void *)conv3x3Params;

 /*! TODO: implement algMoved !*/
 conv3x3–>scratch_pad.int_data = memTab[1].base;
}

/*
 * ======== CONV3X3_TI_control ========
 * TI’s implementation of the control operation.
 */
XDAS_Bool CONV3X3_TI_control(ICONV3X3_Handle handle, ICONV3X3_Cmd cmd,
ICONV3X3_Status *status)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;

 /*! TODO: implement control !*/
 if(cmd == ICONV3X3_GETSTATUS) {
 status–>pitch = conv3x3–>pitch;
 status–>lpf_coeffs = conv3x3–>mask;
 status–>shift = conv3x3–>shift;
 }
 else if(cmd == ICONV3X3_SETSTATUS) {
 conv3x3–>pitch = status–>pitch;
 conv3x3–>mask = status–>lpf_coeffs;
 conv3x3–>shift = status–>shift;
 }

 return ((XDAS_Bool)0);
}

/*
 * ======== CONV3X3_TI_apply ========
 * TI’s implementation of the apply operation.
 */
XDAS_Int32 CONV3X3_TI_apply(ICONV3X3_Handle handle, XDAS_Int8* in,
XDAS_Int8* out)
{
 CONV3X3_TI_Obj *conv3x3 = (Void *)handle;

 6-16

 /*! TODO: implement apply !*/
 IMAGE out_image;
 out_image.img_rows = 480;
 out_image.img_cols = 640;

 conv3x3–>scratch_pad.ext_data = in;
 /*! TODO: implement apply !*/
 Conv3x3_image(&conv3x3–>scratch_pad, &out_image, out, conv3x3–>pitch,
 conv3x3–>mask, conv3x3–>shift);

 return ((XDAS_Int32)0);
}

This process is repeated for the individual algorithms including sobel edge
detection, threshold, pre-scale, grayscale. For the purpose of the document
the convolution 3x3 is highlighted, but the remaining algorithms are available
in the example with the eXpressDSP interfaces.

6-17

6.5 Create Main Function for Multi-Tasking Environment

Once the eXpressDSP interfaces of the algorithm are complete, the main func-
tion is created to use the channel manager software framework for the invoca-
tion of the algorithms. The main function makes use of semaphores and multi-
ple tasks for scheduling of the different algorithms. The algorithms are invoked
through the CM algorithm framework. The CM algorithm frameworks uses the
eXpressDSP interfaces created earlier to access the algorithms created. The
project will include the CM files and eXpressDSP interface source and header
files, in addition to the original algorithm files used in the standalone system.

The structure of the main file is different because of a change in the definition
of a channel when using the CM framework. The standalone example created
a DSP/BIOS task that calls the image processing algorithm. This image proc-
essing algorithm calls the four different image processing algorithms (convolu-
tion, threshold, sobel edge detection, and pass-through) with 640x480 NTSC
images. For the purpose of the standalone example, a channel is defined as
a single input frame regardless of how many output frames are produced. The
channel manager software framework uses a different definition of a channel.
A channel is defined as any input to output frame path regardless of how many
different algorithms access the input frame. This change in definition is made
to allow more modular design of the software framework. In this example, four
channels will be defined and used to accommodate the four different output
images in the image processing demonstration.

The mainapp.c file is used to demonstrate the changes required when inte-
grating an algorithm into the CM software framework. The structure of the mai-
napp.c file is that each algorithm is a different channel that must be processed.

Steps to Add a Channel of an Algorithm Using the CM Framework

In project .cdb file:

1) Create sem object for new channel.

2) Create sts object for channel.

3) Create tsk object for channel (mapped to function apppropriate function
and priority (use other channels as examples).

In main file:

1) Add approciate header files.

2) Declare BIOS objects for additional channels.

3) Define handle for new channel object.

 6-18

4) Define display offset for channel video output.

5) Define handles for channel object.

HANDLE hconv3x3

6) CM_Init() called once in the main file (if already present, do not add again).

CM_Init();

7) CM_Control called for initializing the internal and external heap pointers.

CM_Control(CM_SET_INTERNAL_HEAP, InternalHeap);

CM_Control(CM_SET_EXTERNAL_HEAP, ExternalHeap);

8) Register the channel with the CM framework.

CM_Reg_Alg invoked to register each algorithm with the channel manag-
er using the handles declared earlier.

hconv3x3 = CM_RegAlg(”Convolution 3 x 3”,
&Conv3x3_TI_IConv3x3,

(void (*)())Conv3x3_TI_IConv3x3.apply, NULL, 1, 1);

9) Open channel and configure to exectue in the CM framework.

CM_Open declared to initialize each channel.

hCha[0] = CM_Open(””, NULL, NULL);

10) Set algorithms in the CM framework.

CM_SetAlgs called to set the algorithms in each channel.

CM_SetAlgs(hCha[0], 1 , &hconv3x3);

11) Post channel semaphore to blockcapture and display buffers.

12) Execute channel object within the CM framework.

CM_Exec invoked to execute each algorithm in the specified channel ob-
ject.

CM_Exec(hCha[0], im, out, NULL, SIG_DEF);

The include files are similar to the standalone example, however the channel
manager header file, cm.h is added. In addition, the header files for each of
the algorithms are specified. The output quadrants are specified differently
from the standalone example. Five channels are created in this example since
the pre-scale algorithm, although not displayed directly is also called as a
channel. By using semaphores, the input frame is not overwritten until each
algorithm has processed the current frame. Additionally, an output semaphore
is created to wait for all algorithms to complete for the display buffer. The quad-
rant of the monitor used for the output of each channel, sobel edge detection,

6-19

convolution 3x3, threshold, and pass-through is determined by an individual
output offset.

Objects created in the DSP/BIOS cdg file are declared as external global vaira-
bles. In this example, statistics are created in the DSP/BIOS cdb file to gather
execution timings for the different algorithms.

/*––*/

/* DSP/BIOS includes header files */

/*––*/

#include <std.h>

#include <log.h>

#include <swi.h>

#include <sem.h>

#include <clk.h>

#include <sts.h>

#include <tsk.h>

/*––*/

/* CSL includes */

/*––*/

#include <csl.h>

#include <irq.h>

#include <dat.h>

#include <cache.h>

/* channel manager includes */

#include <cm.h>

/*––*/

/* Algorithm header file includes */

/*––*/

#include ”grayscale_ti.h”

#include ”sobel_ti.h”

#include ”conv3x3_ti.h”

#include ”thold_ti.h”

#include ”gscopy_ti.h”

/*––*/

/* Capture/Display Hardware Application includes */

/*––*/

#include ”vcap.h”

 6-20

#include ”vdis.h”

/*––*/

/* Function declarations for routines */

/*––*/

#define HEIGHT 240

#define WIDTH 320

#define CHA_CT 4

#define MSG_FRAME_RATE 0x02

#define MSG_CHANNEL_PAUSE 0x03

#define MSG_CHANNEL_RESUME 0x04

#define MSG_CHANGE_FILTER_TYPE 0x06

#define MSG_CHANGE_THRESHOLD 0x07

#define MAX_RATE 30

/*––*/

/* Data buffer definition */

/*––*/

#pragma DATA_ALIGN(ybuff,128);

unsigned char ybuff[(HEIGHT+6)*WIDTH];

/*––*/

/* Channel related variable definitions */

/*––*/

HANDLE hCha[CHA_CT+1];

FRM_OBJ inputFrm;

FRM_OBJ *in[1];

FRM_OBJ outputFrm, *out[1];

FRM_OBJ imFrm[1], *im[1];

/*––*/

/* Output offset for each channel (upper left, upper right, lower left, */

/* lower right. */

/*––*/

int output_offset[CHA_CT] =

{

 0,

 320,

 (640*240),

6-21

 (640*240)+320,

};

int output_size[CHA_CT][2] =

{

 {320,240},

 {320,240},

 {320,240},

 {320,240},

};

/*––*/

/* Channel task related globals variables. */

/*––*/

STS_Obj* STS_ExeTime[CHA_CT];

TSK_Handle hTask[CHA_CT];

int TaskPri[CHA_CT];

SEM_Obj *SEM_Ch[CHA_CT];

int MaxRate = 30;

extern far volatile int CapRate;

/*––*/

/* Externally defined objects for example (defined in BIOS .cdb file. */

/*––*/

extern STS_Obj STS_ExeTimeCha1, STS_ExeTimeCha2, STS_ExeTimeCha3;

extern STS_Obj STS_ExeTimeCha4;

extern int InternalHeap;

extern int ExternalHeap;

/*––*/

/* I/O Task variable definitions */

/*––*/

volatile int Rate[CHA_CT];

int IncFlag[CHA_CT];

volatile void* output;

volatile void* prev_output;

volatile VCAP_Frame *input;

SEM_Obj* semOutput;

/*––*/

/* Main function */

/*––*/

 6-22

void main()

{

 int i;

 HANDLE hsobel, hconv3x3, hthold, hgrayscale, hcopy;

 /*––*/

 /* Create semaphore objects for multi–channel environment. Set initial count */

 /* to zero for each object. */

 /*––*/

 for(i = 0; i<CHA_CT;i++)

 {

 SEM_Ch[i] = SEM_create(0,NULL);

 }

 /*––*/

 /* Initialize the I/O data buffer pointers for channels */

 /*––*/

 in[0] = &inputFrm;

 out[0]= &outputFrm;

 imFrm[0].Addr = ybuff;

 im[0] = &imFrm[0];

 for(i = 0; i<CHA_CT;i++)

 {

 IncFlag[i] = 0;

 TaskPause[i] = FALSE;

 Rate[i] = MaxRate;

 }

 /*––*/

 /* Create output semaphore object for display and capture buffer */

 /*––*/

 semOutput = SEM_create(0,NULL);

 /*––*/

 /* Initialize CSL and open the next available DMA channel for data transfer*/

 /*––*/

6-23

 CSL_Init();

 DAT_Open(DAT_CHAANY, DAT_PRI_LOW, DAT_OPEN_2D);

 /*––*/

 /* Initialize Channel Manager application framework and setup internal and */

 /* external heap pointers. */

 /*––*/

 CM_Init();

 CM_Control(CM_SET_INTERNAL_HEAP, InternalHeap);

 CM_Control(CM_SET_EXTERNAL_HEAP, ExternalHeap);

 /*––*/

 /* Initialize pointers of DSP/BIOS statistics objects for channels */

 /*––*/

 STS_ExeTime[0] = &STS_ExeTimeCha1;

 STS_ExeTime[1] = &STS_ExeTimeCha2;

 STS_ExeTime[2] = &STS_ExeTimeCha3;

 STS_ExeTime[3] = &STS_ExeTimeCha4;

 /*––*/

 /* Register algorithms with the channel manager application framework */

 /*––*/

 hsobel = CM_RegAlg(”Sobel”, &SOBEL_TI_ISOBEL,
 (void (*)())SOBEL_TI_ISOBEL.apply, NULL, 1, 1);

 hconv3x3 = CM_RegAlg(”Convolution 3 x 3”, &CONV3X3_TI_ICONV3X3,
 (void (*)())CONV3X3_TI_ICONV3X3.apply, NULL, 1, 1);

 hthold = CM_RegAlg(”Threshold”, &THOLD_TI_ITHOLD,
 (void (*)())THOLD_TI_ITHOLD.apply, NULL, 1, 1);

 hgrayscale = CM_RegAlg(”Pre–scale”, &GRAYSCALE_TI_IGRAYSCALE,
 (void (*)())GRAYSCALE_TI_IGRAYSCALE.apply, NULL, 1, 1);

 hcopy = CM_RegAlg(”pass through”, &GSCOPY_TI_IGSCOPY,
 (void (*)())GSCOPY_TI_IGSCOPY.apply, NULL, 1, 1);

 /*––*/

 /* Open channels for the CM application framework and set algorithms for */

 6-24

 /* each channel. */

 /* Channel 0 : 3x3 convolution */

 /* Channel 1 : sobel edge detection */

 /* Channel 2 : threshold */

 /* Channel 3 : image copy for pass–thru */

 /* Channel 4 : image pre–scale */

 /*––*/

 for(i = 0; i < CHA_CT+1; i++)

 {

 hCha[i] = CM_Open(””, NULL, NULL);

 }

 CM_SetAlgs(hCha[0], 1 , &hconv3x3);

 CM_SetAlgs(hCha[1], 1 , &hsobel);

 CM_SetAlgs(hCha[2], 1 , &hthold);

 CM_SetAlgs(hCha[3], 1 , &hcopy);

 CM_SetAlgs(hCha[4], 1 , &hgrayscale);

 /*––*/

 /* Configure capture hardware for NTSC square pixel and siplay hardware */

 /* for gray scale images. */

 /*––*/

 VCAP_config(VCAP_SQP);

 VDIS_config(VDIS_640X480_GS);

 CapRate = MaxRate;

}

/*––*/

/* I/O task used to capture I/O buffers for each channel & post semapohore */

/* objects. */

/*––*/

void Task_IO()

{

 int i;

 int posted = 0;

6-25

 int id = (int)INV;

 /*–––*/

 /* The current set of input and output pointers are obtained by */

 /* calls to the getFrame and toggleBuffs routine. By using the */

 /* SYS_FOREVER flag the function blocks until a new frame arrives */

 /* By setting the output side argument to 0, the next available */

 /* buffer is returned independent of the display event. */

 /* ”input” and ”output” are pointers to input frame and output */

 /* data. The output buffer pointer is obtained for the first time */

 /* use of the previous output. */

 /*–––*/

 output = VDIS_toggleBuffs(SYS_FOREVER);

 while(1)

 {

 if(id != (int)INV)

 {

 DAT_Wait(id);

 id = (int)INV;

 }

 prev_output = output;

 input = VCAP_getFrame(SYS_FOREVER);

 output = VDIS_toggleBuffs(0);

 in[0]–>Addr = input–>y1;

 /*––*/

 /* Execute specific channel using CM application framework. */

 /*––*/

 CM_Exec(hCha[CHA_CT], in, im, NULL, SIG_DEF);

 /*––*/

 /* Loop through all channels and post the corresponding semaphore, the */

 /* channel is waiting for. Each channel must release the output buffer */

 /* to continue to allow for synchronization. */

 /*––*/

 6-26

 for(i = 0; i< CHA_CT; i++)

 {

 if(IncFlag[i] >= MaxRate)

 {

 IncFlag[i] –= MaxRate;

 SEM_ipost(SEM_Ch[i]);

 posted ++;

 }

 IncFlag[i] += Rate[i];

 }

 while(posted)

 {

 SEM_pend(semOutput, SYS_FOREVER);

 posted––;

 }

 }

}

/*––*/

/* Channel Task used for each channel. The tasks are differentiated by */

/* the ChaNo. */

/*––*/

void Task_Ch(int ChaNo)

{

 double t0,t1;

 /*––*/

 /* Determine task handle and priority prior to execution. */

 /* Wait for the channel semaphore before continuing. Statistic objects */

 /* are used to measure execution time of each channel algorithm. Output */

 /* is positioned according to the channel offset value prior to algorithm */

 /* execution. The semaphore object is posted once algorithm complete. */

 /*––*/

 hTask[ChaNo] = TSK_self();

6-27

 TaskPri[ChaNo] = TSK_getpri(hTask[ChaNo]);

 while (1)

 {

 SEM_pend(SEM_Ch[ChaNo], SYS_FOREVER);

 SEM_reset(SEM_Ch[ChaNo], 0);

 t0 = ((double)CLK_getl-
time()*(double)CLK_getprd())/(double)CLK_countspms();

 out[0]–>Addr = ((char *)output)+output_offset[ChaNo];

 CM_Exec(hCha[ChaNo], im, out, NULL, SIG_DEF);

 t1 = ((double)CLK_getl-
time()*(double)CLK_getprd())/(double)CLK_countspms();

 STS_add(STS_ExeTime[ChaNo], (t1–t0));

 SEM_ipost(semOutput);

 }

}

/*––*/

/* End of mainapp.c file. */

/*––*/

 6-28

6.6 Conclusions

Although standalone algorithms are useful for benchmarking and feasibilty
studies, most applications require a framework to manage the algorithms and
the DSP hardware. This document takes a standalone image processing ex-
ample and integrates it into the generic Channel Manager Algorithm frame-
work that supports the eXpress DSP Algorithm Standard.

7-1

Conclusions

This chapter summarizes the concepts discussed in the programmer’s guide.
The chapters that preceded this chapter discussed the underlying software
and hardware components that were used to form the IDK. The examples in-
cluded as part of the programmer’s guide were intended to ease the learning
curve that users typically face. The IDK makes use of several key software
pieces such as CSL, IDM and the Channel Manager Framework to be able to
implement multichannel implementation of several algorithms running concur-
rently in a multi-tasking environment. In addition the ability to develop algo-
rithms, whose run time parameters can be dynamically changed is particularly
impressive. A thorough knowledge of these different components should aid
programmers in developing new imaging applications using the power of TI
C6000 DSP on the Imaging Developer’s Kit.

Topic Page

7.1 Review of Programmer’s Guide 7-2.

Chapter 7

Review of Programmer’s Guide

 7-2

7.1 Review of Programmer’s Guide

Chapter 1: Introduction

This chapter introduced users to the various underlying software and hard-
ware aspects of the IDK. An insight into what programmers should learn from
the different documents was also provided. The programmer’s guide itself is
not intended to supplement any of the IDK documentation. It is rather intended
to decrease the learning curve associated with using the IDK.

Chapter 2: Image Data Manager

The Image Data Manager (IDM) is a software component of the IDK that pro-
vides the users the abstraction of double buffered DMAs to perform the data
transfers in the background, by seamlessly bringing data from external to inter-
nal memory without stalling the CPU. The IDM provides to the user a set of
APIs that make use of the DAT calls in CSL to effectively bring the data re-
quired for an algorithm. The “double buffered” and “sliding window” mecha-
nisms are supported by IDM. Useful features such as stream rewind allow us-
ers to implement different kinds of data flows in an effective manner. IDM is
used in the examples included in the programmer’s guide to implement the
data flow required for every algorithm.

Chapter 3: Development of Application Divers as Generic Templates for
Image Processing

This chapter uses IDM to develop a set of application drivers for grayscale and
color based processing. These drivers allow the user to specify regions in in-
ternal and external memory between which data transfer is to take place. Al-
though the actual data on the Imaging daughter card, resides in separate
fields, the application drivers developed in this chapter allow users to process
the image either in progressive order or in field order. Further when data is be-
ing processed in field order, the user can choose the number of lines to be
fetched every time and thus balance the data bandwidth to the processing
bandwidth. The application drivers for color allow users to investigate several
possible trade-offs between implementing data transfer through the EDMA
versus using the CPU. The resulting performance on the color and grayscale
application drivers are summarized.

Chapter 4: Application Development and Prototyping Using Generic
Templates

This chapter demonstrates how the application drivers developed in the pre-
vious chapter can be used either as is, or with a few modifications to provide
the data required for developing new applications. This is demonstrated by
way of a median filtering example for grayscale processing and a color rotation
demonstration for color based processing.

Review of Programmer’s Guide

7-3Conclusions

Chapter 5: Image Processing Using ImageLIB

This chapter demonstrates the power of ImageLIB a collection of highly opti-
mized image processing functions for the TMS320C6000 DSP. This chapter
uses three image processing functions from ImageLIB to put together the
image processing demonstration that forms part of the IDK. The image proc-
essing functions allow users to process a variable amount of the image for ev-
ery invocation, thus allowing the user to trade off the processing bandwidth,
data transfer bandwidth to interruptability requirements for the system. This
chapter is intended to demonstrate the recommended application develop-
ment flow from start to finish on a complete application of reasonable
complexity.

Chapter 6: Integration of an Application into the Imaging Framework

The availability of an imaging framework for users to leverage is one of the
most attractive software features of the IDK. The Imaging Framework has the
ability to run either multiple instances of an algorithm or multiple instances of
different algorithms. This allows for a multichannel implementation of an algo-
rithm. This chapter demonstrates to users how the application developed in
the previous chapter, can be converted to be eXpressDSP-compliant. It also
demonstrates how the eXpressDSP-compliant algorithm can then use the
Channel Manager (Imaging Framework) APIs to register itself, and to be in-
voked dynamically. In addition the ability to vary the parameters of an algorithm
at run-time is another attractive feature of the framework. Development of ap-
plications that are eXpressDSP-compliant guarantee the inter-operability of
various standards developed by different vendors. It is extremely important
that new applications developed using the IDK be developed in an
eXpressDSP-compliant framework.

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Related Documentation From Texas Instruments
	Text Conventions

	Contents
	Figures
	Tables
	Introduction
	IDK as a Rapid Prototyping Platform
	Rapid Prototyping Software Suite
	Rapid Prototyping Hardware

	IDK Documentation from a Programmer’s Perspective
	Overview of the Programmer’s Guide

	Image Data Manager (IDM)
	Software Architecture for the IDK
	Conceptual Details of Image Data Manager (IDM) Implementation
	Double Buffering
	Sliding Window Mechanism
	Data Transfers that Image Data Manager Does Not Support

	Image Data Manager API Documentation
	dstr_open
	dstr_get
	dstr_get_2d
	dstr_put
	dstr_put_2d
	dstr_rewind
	dstr_close
	Direction Structure Definitions
	DMA Stream Definition

	Programming Model for the Image Data Manager
	Conclusions

	Development of Application Drivers as Generic Templates for Image Proces\
sing
	Imaging TDK Hardware
	Video Capture
	Video Display
	Application Drivers for Gray Scale Processing
	Gray Scale Driver
	Gray Scale Application Driver for Odd-Even Field Based Processing
	DSP Loading for Gray Scale Application Drivers

	Development of Color Application Drivers
	Color Application Driver for Progressive Order Using EDMAs to Merge Even\
/ Odd Fields
	Color Application Drivers for Progressive Order with DSP Doing Even/Odd \
Field Merge
	Color Application Drivers for Odd/Even Field Based Processing

	DSP Loading for Color Application Drivers
	Conclusions

	Application Development and Prototyping Using Generic Templates
	Recommended Application Development Flow for IDK
	Development of the Non-Linear Median Filtering Algorithm
	Problem Statement
	Use of ImageLIB in Developing an Application
	Using IDM to Implement Data Flow for Algorithm
	Using Generic Templates to Feed Algorithm with Image Data
	Putting the Modules Together for Initial Testing

	Development of Color Plane Rotation Algorithm
	Problem Definition

	Conclusions

	Image Processing Using ImageLIB
	Problem Definition
	Use of ImageLIB Components

	Use of Image Data Manager to Manage Data Flow for ImageLIB Components
	API interface for Image Processing Algorithms

	Modifying the Application Driver for the Algorithm
	Algorithm Integration for Initial Testing
	Performance Considerations
	Conclusions

	Integration of an Application into the Imaging Framework
	Overview
	Channel Manager (CM) Overview
	Verify eXpressDSP Compliance of Rules and Guidelines
	Create eXpressDSP Interfaces
	eXpressDSP Template Tool
	Modify eXpressDSP Template Tool Output Files
	iconv3x3.c and iconv3x3.h
	conv3x3_ti_vtab.c
	conv3x3_ti.c

	Create Main Function for Multi-Tasking Environment
	Steps to Add a Channel of an Algorithm Using the CM Framework

	Conclusions

	Conclusions
	Review of Programmer’s Guide

