
FlexGATM
 Version 1.0

 Evolutionary and Genetic Algorithms

User’s Guide

10110010100100
01010101101001
01001001001001
11001010010010
00010010010100

10110010100100
01010101101001
01001001001001
11001010010010
00010001010010

10110010100100
01010101101001
01001001001001
11001010010010
00010100100101

10110010100100
01010101101001
01001001001001
11001010010010
00011010100010

10110010100100
01010101101001
01001001001001
11001010010010
00010100100100

Flexible Intelligence Group
L.L.C.

 FlexGA User’s Guide1-2

The software described in this document is furnished under a
license. The software may be used or copied only under the
terms of the license agreement.

FlexGA Version 1.0 Release Notes (December 1998)
© COPYRIGHT by Flexible Intelligence Group, L.L.C. All Rights Reserved.

No part of this manual may be photocopied or reproduced in any form without the prior written consent
from The Flexible Intelligence Group, L.L.C.

FlexGA is a trademark of Flexible Intelligence Group, L.L.C.
Other product or brand names are trademarks or registered trademark of their respective holders.

Printing History
December 1998 First Printing

Flexible Intelligence Group, L.L.C.
P. O. Box 861477
Tuscaloosa, AL 35486-0013, USA.
e-mail: product@flextool.com
http://www.flextool.com/

FlexGA Users Guide 1-3

Table of Contents

1. INTRODUCTION 1-4

1.1. UP AND RUNNING WITH FLEXGA 1-4
1.2. FLEXGA SOFTWARE MODULES 1-6

2. OVERVIEW OF GENETIC ALGORITHMS AND EVOLUTIONARY
ALGORITHMS 2-7

2.1. BACKGROUND 2-8
2.2. GENETIC ALGORITHMS TERMINOLOGY 2-10
2.3. EVOLUTIONARY ALGORITHMS 2-12
2.4. SIMPLE GENETIC ALGORITHMS 2-14
2.5. MICRO-GENETIC ALGORITHMS (µµGA) 2-15
2.6. STEADY STATE GENETIC ALGORITHMS 2-16
2.7. GENETIC ALGORITHMS WITH STOCHASTIC CODING 2-17
2.8. NICHING IN GENETIC ALGORITHMS 2-20
2.9. HANDLING CONSTRAINTS IN GA 2-22
2.10. BROAD GUIDELINES FOR GA IMPLEMENTATION 2-23
2.11. GENETIC ALGORITHMS BUILDING BLOCKS 2-25

3. FLEXGA TUTORIAL ON SOFTWARE USAGE 3-30

3.1. EXAMPLE 1: A SIMPLE FUNCTION 3-33
3.2. EXAMPLE 2: A DIFFICULT FUNCTION. 3-35
3.3. EXAMPLE 3: MULTIPLE PEAKS 3-35
3.4. EXAMPLE 4: NON-CONVEX OPTIMIZATION 3-36
3.5. EXAMPLE 5: CONTROL OPTIMIZATION 3-37

4. BIBLIOGRAPHY 4-39

 FlexGA User’s Guide1-4

1. Introduction
Welcome to the FlexGATM User’s manual. FlexGA implements several Evolutionary and
Genetic algorithms combinations for use in the Matlab environment. Matlab is produced
and distributed by MathWorks Ltd.

Please refer to the software license agreement provide at the end of the document before
using this product.

This manual consists of Five parts.

1. Introduction and up and running with FlexGA
2. Overview of Genetic Algorithms and Evolutionary Algorithms
3. Tutorial on the use of FlexGA
4. Bibliography
5. License Agreement

1.1. Up and running with FlexGA

We will discuss the following in this section.
• FlexGA Features
• Installation requirements
• Support Information
• Quick Start Instructions

1.1.1. FlexGATM Features

Researchers, Industrialists, and Educators encounter innumerable problems that are difficult
to solve using traditional optimization techniques. Genetic algorithms (GAs) have been
shown to be robust probabilistic optimization tools for applications ranging from
mathematics and engineering sciences to medicine and political sciences. GAs are parameter
search procedures based upon the mechanics of natural genetics. The GA search combines a
Darwinian survival-of-the-fittest strategy to eliminate unfit characteristics and uses random
information exchange, with exploitation of knowledge contained in old solutions, to effect a
search mechanism with surprising power and speed.

The following features makes FlexGA unique.

• Modular
• User Friendly
• Hardware and operating system transparent
• GA options include generational GA, steady state GA, micro GA
• Coding Options include integer, real discrete, and real continuos.
• Selection strategies include tournament, roulette wheel, and ranking
• Crossover techniques include one point, two point, and multiple point

crossover
• Niching module to identify multiple solutions
• Default parameter settings for the novice
• Statistics, figures, and data collection

FlexGA Users Guide 1-5

1.1.2. Installation requirements

FlexGA runs in the MATLAB environment. Thus any hardware platform that supports
MATLAB is sufficient and necessary for FlexGA. Other requirements include:

1. A hard disk with at least 2.0MB free space

2. A 1.44MB 3½ inch floppy drive

1.1.3. Technical Support Information

Flexible Intelligence Group, L.L.C. (FIG) provides on-line technical support to their
registered users. The following steps are advised to ensure the best utilization of FlexGA
capabilities in case you encounter difficulties.

1. Ensure that you are complying with the instructions given in the tutorial section of
the User’s manual.

2. If the problem still remains, please note down the specific details and send email to
support@flextool.com or fax your questions to 205-345-5095. Please include your
registration number in your email. FIG will answer your technical questions and
handle any problems.

1.1.4. Quick Start Instructions

Follow these instructions step by step to install and run FlexGATM .

INSTALLING FlexGA
1. Boot your system if so required. Ensure that you are at the command prompt.
2. Change to the appropriate directory where you want to install FlexGA. Use the cd

command.
3. Create a directory called flexga on the hard disk using the command mkdir flexga.

Change the current directory to flexga by typing cd flexga.
4. Ensure that flexga is the current directory on the hard disk.

• If PC DOS based system, use the command: copy A:\flexga*.*
• If PC Window based system, use the same as above or use the Windows

copy command.
• If UNIX based system, use the appropriate dos copy command.

5. Remove the disk from the floppy disk drive and return it to the plastic sleeve at the
back of the manual or store it in a safe place.

6. Read fmreadme.txt before starting FlexGA

 RUNNING FlexGA

1. Please ensure that MATLAB is installed in your system.
2. Start MATLAB.
3. Ensure that the path to FlexGA directory is added to the MATLAB path list.
4. Type gaex1 at the MATLAB prompt to run the first tutorial example (see Section

3).
5. Refer to the tutorial section for further help.

 FlexGA User’s Guide1-6

6. FlexGA can be executed with many combinations of choices. We have made every
effort to make this software bug-free. Please let us know if you have noticed a flaw
in the software execution for any one of the combinations that you might try.

1.2. FlexGA Software Modules

The following modules are included with FlexGA

Module name Functionality
fmga_def.m Default values for GA Parameters
flexga.m Command line execution of GA.
fminit.m Initialize variables for GA
fminipop.m Creates initial random population.
fmgen.m Runs each generation of GA.
fmcross.m The Crossover operator for GA
fmdecode.m Decodes the GA parameter strings (chromosomes).
fmmutate.m Mutation function.
fmselect.m Selects the individuals for the next generation.
fmshuffl.m Shuffle function.
fmstats.m Statistics.
fmnich.m Niching function to evolve multiple solutions.
ex1.m -- ex5.m Test PI for Examples 1 through 5
gaex1.m --
gaex5.m

Main programs for executing ex1.m -- ex5.m

FlexGA Users Guide 2-7

2. Overview of Genetic Algorithms and
Evolutionary Algorithms

Genetic algorithms (GA) are rooted in the mechanism of evolution and natural genetics. GA
derive their strengths by simulating the natural search and selection process associated with
natural genetics. GA accommodate all the facets of soft computing, namely uncertainty,
imprecision, non-linearity, and robustness. Some of the attractive features include:

Learning: GA are the best known and widely used global search techniques with an
ability to explore and exploit a given operating space using available performance
(or learning) measures. Moreover, genetic operators such as crossover, mutation,
and reproduction allow express simulations of an extensive learning process of
nature.

Generic Code Structure: GA operate on an encoded parameter string and not
directly on the parameters. This enables the user to treat any aspect of the problem
as an optimizable variable.

Optimality of the Solutions: In many problems, there is no guarantee of smoothness
and unimodality. Traditional search techniques often fail miserably on such search
spaces. GA are known to be capable of finding near optimal solutions in complex
search spaces.

Advanced Operators: This includes techniques such as niching (for discovering
multiple solutions), combinations of Neural, Fuzzy, and chaos theory, and multiple-
objective optimization.

Genetic algorithms are a numerical optimization technique. More specifically, they are
parameter search procedures based upon the mechanics of natural genetics. They combine a
Darwinian survival-of-the-fittest strategy with a random, yet structured information
exchange among a population of artificial “chromosomes”. This technique has gained
popularity in recent years as a robust optimization tool for a variety of problems in
engineering, science, economics, finance, etc.

Genetic algorithms in general require the parameter set of an optimization problem to be
coded as a finite length string (called chromosomes, individuals, or population members).
The traditional method is to use binary “bit strings”, however, real numbered and integer
strings have also been used successfully. For example, suppose an optimization problem has
two parameters, the user might choose to represent each parameter with 10 binary bits.
Thus, each chromosome would be a 20-bit binary string. A single 20 bit string represents
one of the 220 = 1,048,576 alternative solutions. It is also necessary to be able to assign a
relative “fitness” (or “performance index”) value to each chromosome. The performance
index is usually calculated by decoding the chromosome, applying the parameters to the
problem at hand, and evaluating the performance. Genetic algorithms then proceed by
generating an (usually random) initial population of chromosomes, and applying GA
“operators” to the population.

 FlexGA User’s Guide2-8

Population
of Individuals

Evaluate
 Fitness

Selection

 Recombination

Objective Function

Individual/Chromosome

1000 0010 0011

Decode

Parents

Crossover
Mutation

Coding
Random Init. Population

Parameters

M
ates

Child
re

n
Figure 2.1. Computational Flow in Genetic Algorithms

An Genetic algorithm will typically employ three “operators”: (1) selection, (2)
recombination, and (3) mutation (see Figure 2.1). Typically, each of these operators is
applied to the population once per “generation”, and usually several generations are required
to achieve satisfactory results. Selection is a process where an old string is carried through
into a new population depending on the performance index (i.e. fitness) values.
Recombination is usually applied after selection. The idea behind recombination is to
combine pieces of two or more chromosomes, which results in new pairs of strings
(chromosomes or solutions). Mutation, the third operator, is simply an occasional random
alteration of a string position (based on a probability of mutation). In a binary code, this
involves changing a 1 to a 0 and vice versa. The mutation operator helps in avoiding the
possibility of mistaking a local minimum for a global minimum. Mutation is usually used
sparingly. Typically, one mutation per one thousand bits is acceptable though this is a
problem-dependent rule of thumb. When mutation is used in conjunction with selection and
crossover, it improves the global nature of the GA search.

In general, several generations (successive applications of the operators) are applied. A new
population is the result of each generation. If the GA functions the user should notice an
improvement in the general fitness of the populations.

2.1. Background

Genetic Algorithms (GA) are rooted in the mechanism of evolution and natural genetics.
Simulating evolution for useful purposes has been proposed and evaluated in different ways.
Evolutionary Operation by Box, learning machines via evolution by Friedberg’s,
Evolutionary Programming by Fogel, Genetic Algorithms by Holland, and Evolutionary
Strategies by Rechenberg and Schwefel were some of the activities that have made
Evolutionary Algorithms a powerful approach towards finding solutions to complex
problems. Genetic algorithms, as practiced today, come in different flavors: genetic
algorithms; evolutionary strategies; and evolutionary programming. An offshoot of genetic
algorithms is the concept of genetic programming. All of these algorithms derive their
strengths by simulating the natural search and selection process associated with natural
genetics. Genetic algorithms accommodate all the facets of soft computing, namely,
uncertainty, imprecision, non-linearity, and robustness. Other attractive features include
domain independent operation, adaptive capabilities, and inherent parallelism.

FlexGA Users Guide 2-9

2.1.1. Genetic Evolution --- A way to solve complex optimization problems

The complexity of a problem lies in the complexity of the solution search space. This
complexity arise due to: (a) size of the problem domain; (b) non-linear interactions between
various elements; (c) domain constraints; (d) performance measure with dynamics and many
independent and codependent elements; and (e) incomplete, uncertain, and imprecise
information. Systems of nature routinely encounter and solve such problems. Good examples
include genetic evolution of species and human immune system response to foreign bodies.

The genes in its chromosomes determine every organism’s identity. Natural selection takes
place in such a way that these characteristics are implicitly selected via the survival of the
fittest criterion. Selection plays a big role in evolving fit individuals at all levels of living
organisms. However, selection alone is not sufficient in an environment that is constantly
changing. If selection was the only driving force, very soon the genetic makeup of all species
will converge and there will no longer be any adaptation. Clearly, diversity in the gene pool
is essential for successful adaptation in an evolving environment. Nature handles this
problem through genetic recombination, mutation and niche formation. Genetic
recombination plays the role of identifying fitter individuals by combining features from the
available gene pool. This is the implicit process by which radically different individuals are
brought in to compete in the environment. Mutation acts as the random search tool, jumping
from one characteristic to another completely different one. Mutation provides a means for
bringing diversity to a population that might need some diversity to avoid any type of
convergence. Niching is nature's way of maintaining diversity by deriving maximum benefits
from all aspects of the environment. Diploid and dominance are also features that are used
for adapting to an evolving environment.

How does all of this help in solving complex optimization problems? The answer is simple:
We could transform any optimization problem into a set of genetic characteristics
(parameters to be optimized) that will survive in the best possible manner in the environment
(fitness function). Examples include control (action and performance measures), game
theory (strategies and reward), economic planning (mixes of goods and utility), and
computational intelligence (algorithms and machine intelligent quotient or efficiency).

2.1.2. Optimization Techniques

We use different techniques today for optimizing the design space associated with various
systems. Some of the popular techniques in use today includes the golden section method,
simplex search method, conjugate direction search methods, conjugate gradient search
methods. We can classify most of these techniques under calculus-based techniques,
structured random techniques, and enumerative techniques. Calculus-based techniques,
which rely on necessary and sufficient conditions, work well on problems where (1)
analytical expressions for the necessary conditions exist and are solvable (indirect
techniques); (2) numerical gradients (and in some cases the second derivatives) are easy to
compute (direct techniques); and (3) the search space is either unimodal or order of the
search space is small. Some of the popular direct techniques include Newton, Fibbanocci,
Golden section, conjugate gradients, and simplex search technique. The major drawback of
calculus-based methods is the lack of robustness over the broad spectrum of optimization
functions that arise in real-world applications.

Enumeration is an approach that is guaranteed to find the global optimum. The simplest of
enumerative technique is the exhaustive search. This approach is ideal for solving small
problems and problems in which the time constraint is not severe. Another popular
enumerative approach (the most efficient one) is the method of dynamic programming.

 FlexGA User’s Guide2-10

In the recent past, structured random searches that are problem-independent have been
proposed to overcome the shortcomings of calculus-based and enumerative methods. These
types, which in general require only function information, can handle non-convex and
discontinuous functions. Main drawback of these schemes is that they require a trade-off
between available computer time and accuracy of the optimal solution. Genetic algorithms
and simulated annealing are good examples of such techniques.

Genetic algorithms (GA), have become popular among practitioners from varying fields.
This popularity is due to the following:

1) Genetic algorithms are robust in the sense that they are applicable to a variety of
problems with little or no modifications to the technique.

2) Genetic algorithms can handle all search spaces, including non-smooth, multimodal,
and discontinuous spaces.

3) Genetic algorithms can handle multiple objectives with no explicit mixing needed to
define a composite objective function.

4) Genetic algorithms can identify multiple optimal solutions.

5) Genetic algorithms can be used in dynamic optimization situations.

2.2. Genetic Algorithms Terminology

Before we present an overview of Genetic Algorithms, the terminology associated with these
algorithms is addressed. In a typical application of Genetic algorithms, we transform the
given problem into a set of genetic characteristics (parameters to be optimized) that will
survive in the best possible manner in the environment (fitness function). To expand on the
terminology further, we will examine the problem of optimizing a function of two variables.
We present a step-by-step approach in setting up an optimization problem.

Step 1: Function to be Optimized

min

,
(,) () ()

x x
f x x x x

1 2
1 2 1

2
2

22 3= − + −

Step 2: Parameters and their limits

The parameters of the search are identified as x x
1 2
, . These are called the

phenotypes in Genetic Terminology. The limits on these parameters are:

 − ≤ ≤5 5
1

x ; − ≤ ≤10 10
2

x

Step 3: Phenotype to Genotype conversions.

In Genetic algorithms, the phenotypes (parameters) are usually converted to
genotypes by using a coding procedure. For simplicity, we will assume that the
parameters can occupy one of eight values as shown in Figure 2.2 for x x

1 2
, giving

rise a total of 64 possible solutions. These eight possibilities for each of the
variables are represented by a 3 bit binary string (6 bits total for the two variables
combined). This representation using binary coding makes the parametric space
independent of the type of variables used (variables could be integer, real, or other
types).

FlexGA Users Guide 2-11

10.0 111 x x x x x x x x
7.14 110 x x x x x x x x
4.28 101 x x x x x x x x
1.42 100 x x x x x x x x
-1.42 011 x x x x x x x x
-4.28 010 x x x x x x x x
-7.14 001 x x x x x x x x
-10.0 000 x x x x x x x x

B 000 001 010 011 100 101 110 111
D -5.0 -3.57 -2.14 -0.71 0.71 2.14 3.57 5.0

B: Binary; D: Decimal

 x
2

x
1

Figure 2.2.. Discretization of the search space using binary representation.

Step 4: Chromosome Formation

Once the genotypes are defined, the strings are concatenated to form the
chromosomes of the function.

Step 5: Population Formation

A set of these chromosomes forms the population.

Step 6: Generations.

Next the optimization operators are applied to the population and based on certain
criteria the population is altered. This iteration takes the search to the next
generation.

The table below presents some of the terminology used through out this section. Examples
are provided where appropriate.

Table 2.1. GA Terminology

Genetics Terminology GA Equivalent Example
String or Chromosome A coded parametric set 010100
Population A Collection of search points 010011

100111
…..
100111

Generation Next iteration in the GA sense
Gene Feature or character x1

Allele Feature value 101 → 5
Fitness function
or objective function
or Performance index

Function to be optimized f x x x x(,) () ()1 2 1
2

2
22 3= − + −

Locus String position String: 1 0 1 0 1 1
Locus: 1 2 3 4 5 6

Genotype String structure 101101
Phenotype Parametric set [5,10]

 FlexGA User’s Guide2-12

2.3. Evolutionary Algorithms

As stated earlier, evolutionary algorithms come in different flavors. The main variants
include evolutionary strategies, evolutionary programming, and genetic algorithms. Genetic
algorithms use a combination of Darwinistic idea of evolution (survival of the fittest) and
genetic operators such as mutation and recombination. In the next sections, we present brief
overviews of these techniques. We will begin by presenting a simple evolutionary algorithm
with two members and proceed to examine multi-membered evolutionary strategies. Finally,
we discuss genetic algorithms in which both evolutionary and genetic characteristics are
utilized in finding optimal solutions.

2.3.1. Two Membered Evolutionary Algorithms

In the two membered scheme the two principles of mutation and selection, which Darwin
recognized to be most important, are taken as rules for variation of the parameters and for
selecting the member that survives for the next iteration. The following assumptions are
made:

1) The population size is two and remains a constant

2) An individual has an infinitely long life span and capacity for producing descendants
asexually.

3) No difference exists between genotype (encoding) and phenotype (appearance).

4) Only point mutations occur, independently of each other at all single parameter
locations

5) The environment and thus the criterion of survival is constant over time

The iteration steps are outlined below and the Figure below provides the computational flow
required toimplement this algorithm [Schw95]:

Parent

 Evaluate
 Fitness

 Selection Mutate

Objective Function

Individual/Chromosome

1000 0010 0011

Parent

Genes
Random Init. Parent

Parameters

Child,

Parent

Child

Step 0: (Initialization) A given population consists of two individuals, one parent and one
descendant. They are each identified by their genotype according to a set of n genes. Only
the parental genotype has to be specified as starting point.

FlexGA Users Guide 2-13

Step 1: (Mutation) The parent E(g) of the generation g produces a descendant N(g), whose
genotype is slightly different from that of the parent. The deviations refer to the individual
genes and are random and independent of each other.

Step 2: (Selection) Because of their different genotypes, the two individuals have a different
capacity for survival (in the same environment). Only one of them produce further
descendants in the next generation, namely the one, which represents the higher survival
value. It becomes the parent E(g+1) of the generation g+1.

2.3.2. Multi-membered Evolutionary Strategies

In the multi membered scheme [Schw95], once again the two principles of mutation and
selection are utilized. In addition to this, the population size (µµ) is assumed to be more than
two. The following assumptions are made:

1) The population size remains constant

2) No difference exists between genotype (encoding) and phenotype (appearance).

3) Only point mutations occur, independently of each other at all single parameter
locations.

4) The environment and thus the criterion of survival is constant over time

The iteration steps outlined in the Figure below provides the computational flow required to
implement this algorithm [Schw95]:

STEP 0 : (Initialization) A given population consists of µµ individuals. Each is characterized
by its genotype consisting of p genes, which determine the vitality, or fitness for survival.

Population

 Evaluate
 Fitness

Selection Mutate

Objective Function

Individual/Chromosome

2.34 2.46 0.23

Parents

Genes
Random Population

Parameters

Children,

Parents Chi
ld

re
n

STEP 1: (Variation) Each individual parent produces λλ/µµ offspring on average, so that a
total of λλ new individuals are available. The genotype of a descendant differs only slightly
from that of its parents.
STEP 2: (Filtering) Only µµ best of the λλ offspring become parents of the following
generation.

 FlexGA User’s Guide2-14

2.4. Simple Genetic Algorithms

Genetic algorithms differs from the multi-membered Evolutionary Algorithms in the
following ways:

1) GA work with a coding of the parameter set, not the parameters themselves.

2) GA search from a large population of points, not a single point.

3) GA uses recombination operators such as crossover and reordering not just mutation.

Genetic algorithms require the natural parameter set of the optimization problem to be coded
as a finite-length string. As an example, for an optimization problem with two parameters,
the parameters are discretized by mapping from a smallest possible parametric set Kmin to a
largest possible parametric set Kmax. This mapping uses a 10-bit binary unsigned integer for
both K1 and K2. In this coding a string code 0000000000 maps to Kmin and a 1111111111
maps to Kmax with a linear mapping in between. Next, the two 10-bit sets are chained
together to form a 20-bit string representing a particular controller design. A single 20-bit
string represents one of the 220 = 1,048,576 alternative solutions. Table 2.2 presents a
coding example and a sample random initial population. Genetic algorithms work iteration
by iteration, generating and testing a population of strings. This population-by-population
approach is similar to a natural population of biological organisms where each generation
successively evolves into the next generation by being born and raised until it is ready to
reproduce. This approach is very different from classical search methods, where movement is
from one point in the search space to another point based on some transition rule. Another
important difference between GA and the classical approaches is in the selection of the
transition rules. In classical methods of optimization the transition rule is deterministic. In
contrast, GA uses probabilistic operators to guide their search. The algorithm for a GA
follows:

Table 2.2. Coding Example

Kmin Kmax Coding: Population Size=5

1100110011 0011001100

 K1: 0 25 1010101010 1010111101

 K2: -25 25 1110001110 0001101101

0000000000 1111111111 1100111111 0000110111

1011100011 0001101010

STEP 0: (Initialization) A given population consists of n individuals. Each is characterized
by its genotype consisting of p genes, which determine the vitality, or fitness for survival.
Each individual's genotype is represented by a binary bit string representing the object
parameter values either directly or by means of an encoding scheme.

STEP 1: (Selection) Two parents are chosen with probabilities proportional to their relative
position in the current population, either measured by their contribution to the mean
objective function value of the generation (proportional selection) or by their rank (e.g.,
linear ranking selection).

FlexGA Users Guide 2-15

STEP 2: (Recombination) Two different offspring are produced by recombination of two
parental genotypes by means of crossover at a given recombination probability PC. Both of
these offspring are taken into further consideration. Steps 1 and 2 are repeated until n
individuals represent the next generation.

STEP 3: (Mutation) The offspring eventually (with a given fixed and small probability)
undergo further modification by means of point mutations working on individual bits, either
by reversing a one to a zero, or vice versa; or by throwing a dice for choosing a zero or a one,
independent of the original value.

Population
of Individuals

Evaluate
 Fitness

Selection

 Recombination

Objective Function

Individual/Chromosome

1000 0010 0011

Decode
Parents

Crossover
Mutation

Coding
Random Init. Population

Parameters

M
ates

Child
re

n

Convergence of the GA search can be ascertained by either examining the variance of the
population fitness (known as phenotype convergence) or by examining bit-wise convergence
(known as genotype convergence). Zero population fitness variance implies absolute
convergence. Since this is not always possible to achieve, the search can be terminated when
the population variance is below a threshold value. In problems where computational time is
a factor, the best string can be retained without any modifications (elite selection). This way,
if the user decides to terminate the search, a best-so-far solution to the optimization problem
is always available.

2.5. Micro-Genetic Algorithms (µµGA)

Simple Genetic Algorithms (SGA) have been shown to be useful tools for many function
optimization problems. One drawback of SGA is the time penalty involved in evaluating the
fitness functions (performance indices) for large populations, generation after generation. In
[Kris89], a small population approach (coined as Micro Genetic Algorithms--(µGA) with
some very simple genetic parameters was first proposed, and it was shown that µGA
implementation reaches the near-optimal region much earlier than the SGA implementation.
The superior performance of the µGA in the presence of multimodality and their merits in
solving non-stationary function optimization problems were demonstrated.

Just as in the simple GA, the µGA works with binary coded population. The major
difference between SGA and the µGA comes in the population choice and the way new
information is brought in to the evolution process. In the µGA proposed in [Kris89], the
population size is fixed at five. It is a known fact that GA generally do poorly with very
small populations due to insufficient information processing and early convergence to non-
optimal results. The key to success with small population is in bringing in new strings at
regular intervals into the population. Based on this, a step by step procedure for the µGA
implementation is presented below:

 FlexGA User’s Guide2-16

1. Select a population of size 5 either randomly or 4 randomly and 1 good string from
any previous search.

2. Evaluate fitness and determine the best string. Label it as string 5 and carry it to the
next generation (elitist strategy). In this way there is a guarantee that the
information about good schema is not lost.

3. Choose the remaining four strings for reproduction (the best string also competes
for a copy in the reproduction) based on a deterministic tournament selection
strategy. Care should be taken to avoid two copies of the same string mating for the
next generation.

4. Apply crossover with a probability of one. This is done to facilitate high order of
schema processing. The mutation rate is kept to zero as it is clear that enough
diversity is introduced after every convergence through new populations of strings.

5. Check for nominal convergence (reasonable measure based on either genotype
convergence or phenotype convergence). If converged go to step 1.

6. Go to step 2.

The assumption that maximum real-time schema (information) processing yields maximum
performance is supported by empirical results and this maximum schema processing is
achieved in the µGA implementation by constant infusion of new schema at regular
intervals. SGA is known to reach premature convergence forcing the search process to rely

entirely on the mutation operator for new information. In the case of µGA the "start and
restart" procedure helps in avoiding the premature convergence and the µGA is always
looking for better strings.

In implementing µGA, our interest is purely to find the optimum as quickly as possible and
not in the average behavior of the population. In other words, our performance measure for
µGA should be based on the best-so-far string, rather than on any average performance.

2.6. Steady State Genetic Algorithms

In steady state genetic algorithm, a percentage (user defined) of the population selected based
on their fitness, is retained into the next generation. This subset of the population goes
through regular selection for mating purposes but is not altered going into the next

Population
of Individuals

Evaluate
 Fitness

 Elitist
Selection

 Recombination

Objective Function

Individual/Chromosome

1000 0010 0011

Decode
Parents

Crossover
No Mutation

Coding
Random Init. Popn (5)

Parameters

M
ates

Child
re

n

Converged?

No

Yes (keep the best)

FlexGA Users Guide 2-17

generation. This GA variant saves time while using objective functions that require large
amounts of computation time, and string lengths that require large numbers of members in
the population.

2.7. Genetic Algorithms with Stochastic Coding

Studies conducted using dynamic coding, in which a search region is narrowed down as the
search evolves, have usually failed. The attraction in dynamic coding is the shorter string
and hence fewer function evaluations. Discarding the regions that are not promising as
evaluated based on GA performance is the main reason for the failure of these techniques.
Discarding regions leads to a possibility of losing a region that might actually have the
global optimum. It will be desirable to have a dynamic coding scheme that does not discard
any portion of the region but at the same time shifts emphasis to different regions of the
search space. In this section, we detail a GA with stochastic encoding of the parameters
(referred to as a Stochastic GA) that overcomes the problem of having a large search spaces
that require continuous sampling. Stochastic Genetic Algorithm was first presented in
[Kris94] as an approach to effectively solve problems with large number of parameters.
Some of the features of the Stochastic GA as given in [Kris94b] are:

1) Each discrete possibility, as decoded from the binary string, represents a region and not
a single value.

2) The definitions of the regions are dynamic.

3) Region definitions are altered based on the GA evolution.

4) No region is absolutely discarded.

5) Search Region is not explicitly constrained.

6) GA never absolutely converges.

These features can be implemented in the GA by encoding the search region as a binary
string. The search region is represented by a multivariate Gaussian distribution with a mean
vector (µ) and the variance matrix (Σ). The mean vector gives the expected values of the
parameters in the search region, and the variance matrix gives the probability of finding an
optimal parameter set in a particular area of the search region. The stochastic children are
obtained by sampling this multivariate Gaussian distribution.

Before we present the algorithm for Stochastic GA, we present a step-by-step approach
in setting up the optimization problem.

Step 1: Function to be Optimized

min

,
(,) () ()

x x
f x x x x

1 2
1 2 1

2
2

22 3= − + −

Step 2: Parameters and their limits

The parameters of the search are identified as x x
1 2
, . These are called the phenotypes in

Genetic Terminology. The starting limits on these parameters are (true limits are
unknown):

 − ≤ ≤5 5
1

x ; − ≤ ≤10 10
2

x

 FlexGA User’s Guide2-18

Step 3: Phenotype to Genotype conversions.

In stochastic GA, the phenotypes (parameters) are converted to genotypes by using
a coding procedure that is stochastic. For simplicity, we will assume that the
parameters can occupy one of two stochastic regions (not values as in simple GA) as
shown in Figure 2.3 for x x

1 2
, giving rise a total of 4 possible regions (not solutions

as in simple GA). These two possible regions for each of the variables are
represented by 1-bit binary strings (2 bits total for the two variables combined). A
mean and a standard deviation for the normal distribution define the regions.

Step 4: Selection Procedure:

The selection procedure consists of a local selection and a global selection. In the
local selection, a representative of a region represented by a binary string is selected
by randomly drawing m children asexually from that region using the predefined
normal probability distribution. The best child in the region then represents the
region for the global GA based selection. The best child also becomes the mean of
the region and thus provides a dynamically varying search region.

0

1

x1

x2

 0 1

Stochastic RegionMean Asexually
Produced
Children

Figure 2.3. Region definition for stochastic GA.

The stochastic children are obtained by varying all the parameters in the parent’s
phenotype using the multivariate Gaussian distribution [Kris94b]. Here the variance matrix
used in the multivariate Gaussian distribution is adapted continuously as the GA population
evolves. This adaptation of the variance matrix helps to exploit the most promising regions
as the GA explores the search region. The algorithm that implements the above details is
presented below.

Basic Algorithm

Step 1: (Initialization) An initial population of n individuals, characterized by its genotype is
randomly generated. Each individual’s genotype is a binary string representing a search
region of the parameters. The search region is encoded in the binary string by means of a
multivariate Gaussian distribution with mean vector µ and a variance matrix Σ.

Step 2: (Stochastic Phenotype Variation)

Each of the n individuals produces m offspring, so that a total of mn new individuals are
available. The search regions represented by these offspring are obtained by displacing the

FlexGA Users Guide 2-19

parent’s mean vector (µ), with the variance matrix(Σ), resulting in a new mean vector for the
offspring.

Step 3: (Filtering) Out of mn individuals in step 2, only n individuals become parents. The
phenotypes of the chosen individuals are used to redo the coding, resulting in a modified
mean vector. The variance matrix of the offspring is altered based on the (1/5)th success rule.
According to this rule, the variance of the Gaussian distribution is decreased if at least one
out of five phenotype variations (of the same genotype) in step 2 results in an improvement
of the performance index. Otherwise, the variance is increased.

Step 4: (GA Selection) Two parents are chosen with probabilities proportional to their
relative position in the current population, measured either by their contribution to the mean
performance of the current generation (proportional selection) or by their rank (linear
ranking selection). In a tournament selection procedure, the two best individuals from a
random number of individuals are chosen for the next generation.

Step 5: (GA Recombination) The two parents selected in step 4 are recombined with a
probability of crossover pc, giving rise to two new parental genotypes. Steps 4 and 5 are
repeated until we have n new individuals representing the next generation.

Step 6: (GA Mutation) The new generation obtained above undergoes a mutation operation,
where the individual bits of each offspring are mutated (reversed from a one to a zero, or
vice versa) with a small probability(pm).

Initially when the search is started, a symmetric multivariate Gaussian distribution is
assumed over the search region. The initial Gaussian distribution for a two-parameter
optimization problem is illustrated in Figure 2.4. A two dimensional planform view of the

Figure 2.4. Gaussian Distribution for a 2-D problem. Top: Initial Distribution;
Bottom: Evolved Distribution.

 FlexGA User’s Guide2-20

Gaussian distribution and the parameter choices are shown in Figure 2.5. In approach A, as
the GA population evolves, the distribution shifts towards more promising regions and the
variance matrix is altered to exploit the promising regions. This is shown in Figure
2.4(Bottom) for the two-parameter case, where the Gaussian distribution is shown after N
generations. Figure 2.5 (below) shows the planform view of the Gaussian distribution after N
generations.

2.8. Niching in Genetic Algorithms

For many optimization problems there may be multiple, equal, or unequal optimal solutions.
A simple GA cannot maintain stable populations at different optima of such functions. In
case of optimal solutions with equal fitness, sampling errors in GA operators cause the
population to converge to a single solution. However, in the case of unequal optimal
solutions, the population invariably converges to the global optimum. Figure 2.6 presents a
two-parameter search space example with many optimal points. A simple GA with no
niching will converge to a single optimum. Whereas a modification of the GA process with
niching helps in maintaining subpopulations near global and local optima.

The availability of alternate solutions is of great practical utility. To achieve this objective, it
is essential to introduce a controlled competition among different solutions near every locally
optimal region. This would maintain stable subpopulations at such optimal regions. This
could be accomplished by incorporating the concepts of niche and species into the GA search
process.

A niche is viewed as an organism's (individual member of the population) environment
(fitness function) and a species is a collection of organisms with similar features. A simple

Figure 2.5. Gaussian Distribution plan form. Top: Initial Distribution;
Bottom: Evolved Distribution.

FlexGA Users Guide 2-21

GA with no niching converges to a single optimum even though multiple peaks of equal
quality may exist. Nature address such a predicament through the formation of stable
subpopulations of organisms surrounding separate niches by forcing similar individuals to
share their resources. Niching helps to maintain subpopulations near global and local optima
by introducing a controlled competition among different solutions near every local optimal
region.

 Niching in general is achieved using a sharing function. The sharing function creates
subdivisions of the environment by degrading an organism's fitness proportional to the
number of other members in its neighborhood. The amount of sharing contributed by each
organism xi into its neighbor xj is determined by their proximity in the decoded parameter

space (phenotypic sharing) based on a distance measure dij. Given p parameters of unequal

boundaries over a parameter range [xmin - xmax],

Distance Measure: d
x x

x xij

k i k j

k kk

p

=
−

−=
∑ , ,

,max ,min()2
1

where

xk,i = kth parameter of individual 'i'

xk,j = kth parameter of individual 'j'

xk,max = Max. allowable value for kth parameter

xk,min = Min. allowable value for kth parameter

For each dij, we can apply the sharing function s(dij) given by the equation

Figure 2.6. Sample Fitness Surface with Multiple Peaks.

 FlexGA User’s Guide2-22

Sharing Function: S d
d if d

otherwiseij

ij share ij share

()
(/)

=
− <

1

0

σ σω

The limiting distance between the individuals to be shared, σ share , is calculated as the

average distance required to identify each niche distinctly in the solution space. This value
has to be set carefully based on and q uniformly spaced assumed peaks.

σ = −05 1. (/)q p

The following properties hold good for the sharing function.

1) S d ij() .≤ 10 for all dij. This condition imposes a fractional contribution to the effect.

2) S d ij() .= 10 . When both individuals are identical, they will share a full portion with

each other.

3)
lim

() .
d

S d
ij

ij→ ∞
→ 0 0 When the individuals are far apart, they produce no effect on

each other).

The shared fitness of the ith individual (organism) is given as

SharedFitness
TrueFitness

S dij
j

=
∑ ()

2.9. Handling Constraints in GA

In this section, we outline two methods for treating optimization problems with constraints.
These techniques were outlined first by Michalewicz [Mich95].

Penalty Function Methods

Given:

Unconstrained objective:)(min xJ
x

Constraints:
()
()

≤≤+=
≤≤≤

mjqforxh

qjforxg

j

j

10

10

When constraints are involved, assigned penalties usually incorporate degrees of constraint
violations. Most of these methods use constraint violation measures fj (for the j-th

constraint) for the construction of the new fitness.

FlexGA Users Guide 2-23

New Fitness Function: ∑
=

+
m

j
jj

x
xfqxJ

1

2)()(min

where

jq = Relative Penalty weighting factor

(){ }
()

≤≤+

≤≤
=

mjqforxh

qjforxg
xf

j

j
j 1,

1,,0max
)(

Some thoughts on using a Penalty Function [Mich95]

1) Penalties that are functions of the distance from feasibility are better performers than
those which are merely functions of the number of violated constraints

2) For a problem with few constraints, and few full solutions, penalties that are solely
functions of the number of violated constraints are not likely to find solutions

3) Penalties should be close to the expected completion cost, but should not frequently fall
below it. The more accurate the penalty, the better will be the solutions found. When
the penalty often underestimates the completion cost, then the search may not fit the
solution.

4) The genetic algorithm with a variable penalty coefficient outperforms the fixed penalty
factor algorithm, where a variability of penalty coefficient is determined by a heuristic
rule.

2.10. Broad Guidelines for GA Implementation

In the next several paragraphs we give broad guidelines for a novice Genetic Algorithm user.
The choices for some of the GA operators are listed in boldface. These choices have worked
well consistently on various types of problems.

Encoding Structure

One advantage of GA is that the encoding structure permits diverse solution optimization.
However there are some initial decisions that has to be made which mostly depends upon the
number of parameters we want GA to optimize and whether we want continuous or binary
representation. The goal should be to have a minimum bit length and a population size
consistent with the bit length.

Population Size

The population size controls the possible number of solutions GA has to explore the solution
space. Research indicates that the length of the string and the complexity of the problem play
a critical role in determining the population size. The length of the string depends upon the
encoding scheme and the number of parameters and types of parameters we want GA to
optimize.

Since GA depend on information contained in the population, two important factors need to
be paid close attention to. These are: (1) population size; and (2) randomness of the initial
population. Diversity increases with population size, while reducing local optimum
convergence. However too large a population size may result in excessive computational

 FlexGA User’s Guide2-24

time. In our experience, a population size of 1/4th of the string length or larger gives
more reliable and consistent results. Also, the initial population needs to be randomly
distributed across the search space.

Selection

Selection models nature's survival-of-the-fittest principle. Selection strategies include
Roulette wheel selection (proportionate), tournament selection, Ranking selection, etc. The
proportionate selection scheme allocates offspring based on the ratio of the fitness value of a
string to the average fitness value of the population. Typical problems include premature
convergence and weak promotion of better strings. Roulette wheel selection is intuitive and
easy to implement. However, there are scaling problems, can handle only maximization
problems, cause large sampling errors, and requires a large population size. In ranking
selection, we rank members based on their fitness (performance index) and assign offspring
as a function of rank. This avoids scaling problems and can handle both maximization and
minimization problems, but may cause ad hoc allocation of offspring. Tournament selection
is deterministic, works well, can handle both maximization and minimization problems, can
be easily extended to multiple criteria problems, and has been shown to be superior and
mathematically tractable. There are two options here. In binary, pairs of individuals are
picked at random from the population. The one with higher fitness is copied into the mating
pool. Larger tournaments are employed by picking n individuals instead of two (a pair). This
increases the selection pressure. In probabilistic binary, the better individual wins the
tournament with probability 0.5 < p < 1. Tournament size and win probability control
selection pressure. In general, tournament (binary) or ranking selection with elitism is a
good choice. A tournament size of two is recommended.

Crossover

Crossover is a reproduction operator that provides random information exchange. It is aimed
towards evolving better building blocks (schemata with short defining lengths and high
average fitness values). Crossover points are randomly chosen. Crossover could be at a
single-point, two-points, or at n-points. The frequency of crossover is governed by a user
selected crossover rate or probability of crossover (typically around 0.75). Increasing
crossover rate increases recombination of building blocks, however, with an increasing
probability of loosing good strings. The optimum value is problem specific and will have to
be empirically determined. Other options include uniform crossovers and knowledge-
directed crossovers. It has been observed that a crossover performs a faster search than
mutation for objective functions involving high epistaticity (nonlinear interactions among
the bits of the string). If the crossover rate of a bit is dependent upon its position in the
string, the crossover operator is said to have positional bias. If the distribution of the number
of bits exchanged by the crossover operator is non-uniform, the crossover operator has
distributional bias. A single-point crossover exhibits maximum positional bias and minimum
distributional bias whereas a uniform crossover exhibits the opposite. Single and two-point
crossovers preserve schemata because of their low disruption rates but becomes less
exploratory with homogeneous population. A uniform crossover swaps bits irrespective of
their position but have high disruption rates. A uniform crossover is recommended for
small populations where the disruptiveness helps to sustain a highly explorative search.
However, in large populations, the inherent diversity reduces the need for exploration.
A two-point crossover is more suitable in such cases. Based on empirical research
results, a small population size should have a relatively large crossover rate and vice
versa.

FlexGA Users Guide 2-25

Mutation

Mutation is traditionally seen as a background or secondary reproduction operator which
restore inadvertently lost gene values (alleles), prevent genetic drift, and provide a small
element of random search in the vicinity of the population when it has largely converged. A
user specified mutation rate or probability of mutation (typically around 0.001) determines
whether to mutate or not. Usually as the population converges, mutation becomes more
productive than crossover. It may be noted that too high a mutation rate would make the
search too random. Research has shown that a small population size should have a relatively
large mutation rate and vice versa. Also, towards the end of the search, mutation rates can be
increased to help in avoiding premature convergence.

Replacement Strategy over Generations

Options include generational GA (the entire population is replaced every generation) and
steady-state GA (only a small fraction of the strings are replaced every generation). Steady-
state GA use populational elitism, large population sizes, and high mutation and crossover
rates. For problems with heavy computational burden, steady-state GA with elitism is a good
choice.

Objective Function

The objective function should reflect the desired characteristics of the system being
optimized. It is very important that the designer use an appropriate objective function since
this drives the evolution process.

2.11. Genetic Algorithms Building Blocks

Synthesis and analysis of complex systems can be viewed as a puzzle that needs to be solved
using several individual pieces. These individual pieces can be studied, tested, understood,
and built better than the complete system. These pieces, labeled in this book as Building
Blocks, when put together in the required forms result in many different complex systems. In
this section, we will identify these building blocks pertinent to Genetic Algorithms.

In the next several pages we present several building blocks along with their software file
names under the broad categories of:

1) Coding

2) Population

3) Recombination

4) Mutation

5) Selection

2.11.1. Coding

One advantage of GA is that the encoding structure permits diverse solution optimization.
However there are some initial decisions that has to be made which mostly depends upon the
number of parameters we want GA to optimize and whether we want continuous or binary
representation. Encoding schemes include Binary (example: 1001010), K-ary (example:

 FlexGA User’s Guide2-26

1ff0000c0), real (example: 43.76), stochastic, permutation, lisp, etc. . The most common
method is the binary integer representation. Here, each variable (parameter) is first linearly
mapped to an integer defined in a specific range and then encoded using a fixed number of
binary bits. The population members are formed by concatenation of these binary bits.

Binary to Decimal (see fmdecode.m)

Given a binary representation, we convert to the required decimal equivalent in two steps. In
step 1, we convert the binary to an integer representation and in step 2, we convert the
integer representation to decimal equivalent or any other preferred mapping chosen by the
user. It is emphasized here that step 2 is problem dependent and it is up to the user to arrive
at the necessary definition.

Step 1 Algorithm:

I ai i j
j

j

n bits i

= −

=
∑ ,

_ ()

2 1

1

where jia , for j n bits i= 1,..., _ () represents the bit string segment of length n_bits(i) for

encoding the ith parameter integer value.

Example:

[] []a a a a ai i i i i= =1 0 1 0
1 2 3 4, , , ,

I a a a ai i i i i i= + + + = + + + =
, , , ,

* * * *2 2 2 2 1 2 0 2 1 2 0 2 50

2

1

3

2

4

3 0 1 2 3

Step 2 Algorithm:

Explicit upper and lower bounds are given as L x U
i i i
≤ ≤ and from L

i
 computed in step

1, the parameter value x
i
can be computed as

iibitsn
ii

ii I
LU

Lx
12)(_ −

−
+=

Examples:

=⇒=−=== 1111 ;4)1(_;5;10;5 xbitsnLUI

=⇒=−=== 2222 ;5)2(_;5;15;2 xbitsnLUI

2.11.2. Population

In GA, each possible solution is an encoded string of 1s and 0s of a specific length (a
member of the population). A set of such strings (members) forms the population and the
number of strings is the size of the population. The population size controls the possible
number of solutions GA has to explore in the solution space. Research indicates that the
length of the string and the complexity of the problem play a critical role in determining the
population size. The length of the string depends upon the encoding scheme and the number

FlexGA Users Guide 2-27

of parameters and types of parameters we want GA to optimize. Since GA depend on
information contained in the population, two important factors need to be paid close
attention to. These are: (1) population size; and (2) randomness of the initial population. Too
large a population size may result in excessive computational time.

Uniform random initialization (see fminipop.m)

To ensure that the initial population is an unbiased random distribution, a uniform
probability density function can be used to distribute the population. This function could be
used either for Global binary population or for Local binary/non-binary population.

Example:

Binary Coding; Population Size = 5; Chromosome Length =10;

0 0 1 0 1 1 0 0 0 1

0 1 1 1 0 1 1 1 1 0

1 1 0 1 1 0 1 1 1 0

1 0 0 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1 0 0

2.11.3. Recombination

Recombination is a reproduction operator which provides random information exchange. It
is aimed towards evolving better building blocks (schemata with short defining lengths and
high average fitness values). Most popular recombination operator is the Crossover operator.
Crossover could be at a single-point, two-points, or n-points. Another type of crossover is
uniform crossover.

N-point crossover (see fmcross.m)

Crossover is applied to a new generation of population strings. Pairs of strings are selected at
random from the population. Crossover points are randomly chosen. The information present
in the two strings beyond these crossover points are exchanged to form new strings. In two-
point crossover, the information between just the two crossover points will be exchanged.
Two-point crossover eliminates the single-point crossover bias towards end-of-string bits.
The frequency of crossover is governed by a user selected crossover rate or probability of
crossover (typically around 0.75). Increasing crossover rate increases recombination of
building blocks, however, with an increasing probability of loosing good strings.

As an example of a single point crossover, consider two strings X and Y of length 5
mated at random from the mating pool of the new generation (numbers in brackets show a
binary coded representation of a possible combination):

X = X1 X2 X3 X4 X5 [0 0 0 1 1]
Y = Y1 Y2 Y3 Y4 Y5 [1 1 1 0 0]

If the random draw chooses position 3, the resulting crossover yields two new strings X*, Y*

after the crossover.

 FlexGA User’s Guide2-28

X* = Y1 Y2 Y3 X4 X5 [1 1 1 1 1]
Y* = X1 X2 X3 Y4 Y5 [0 0 0 0 0]

2.11.4. Mutation

Mutation is traditionally seen as a background or secondary reproduction operator which
restore inadvertently lost gene values (alleles), prevent genetic drift, and provide a small
element of random search in the vicinity of the population when it has largely converged.
Mutation improves the global search. Usually as the population converges, mutation becomes
more productive than crossover. It may be noted that too high a mutation rate would make
the search too random. This would disallow exploitation of gradient information in the
fitness function. Research has shown that a small population size should have a relatively
large mutation rate and vice versa.

Bit-wise Mutation (see fmmutate.m)

An user specified mutation rate or probability of mutation (typically around 0.001)
determines whether to mutate or not. Usually each bit in the string (chromosome) is flipped
(if 1 then 0, if 0 then 1). Other option includes random replacement (replace the value with a
random one).

Example:
Before Mutation: X = [0 0 0 1 1]; After Mutation: X = [0 0

0 0 1]

2.11.5. Selection

Selection models nature's survival-of-the-fittest principle. The aim is to ensure that fitter
strings (solutions) receive a higher number of offspring, thereby getting a higher chance of
surviving in the new generation. Selection strategies include Roulette wheel selection
(proportionate), tournament selection, Ranking selection, Boltzmann selection, etc. .

Roulette Wheel Selection (see fmselect.m)

The proportionate selection scheme allocates offspring based on the ratio of the fitness value
of a string to the average fitness value of the population. Typical problems include premature
convergence and weak promotion of better strings. Efficient implementations of the
proportionate selection scheme includes stochastic remainder technique and the stochastic
universal sampling technique. These implementations reduce the sampling error which
creeps in due to the bias in real-integer conversion. Roulette wheel selection is intuitive and
easy to implement. However, it has scaling problems, handles only maximization problems,
causes large sampling errors, and requires a large population size. Each string is allocated a

slot (sector angle =
2π fitness

average fitness
of a roulette wheel). A string is allocated an offspring

if a random number between 0 and 2π falls in the sector corresponding to the string.
Proportionate selection allocates approximately equal numbers of offspring to all strings.
This may hinder the promotion of better strings. In Ranking selection, we rank members
based on their fitness (performance index) and assign offspring as a function of rank. This
avoids scaling problems and can handle both max. and min. problems, but may cause ad hoc
allocation of offspring.

FlexGA Users Guide 2-29

Old Population

Above Average: 101100

Average: 110011

Below Average: 000001

101100

110011

000001

Selection New Population

101100

101100

110011

Tournament Selection (see fmselect.m)

Roulette wheel selection defined earlier suffers from two problems: (1) it can handle only
maximization problems; and (2) scaling of the fitness become very important near
convergence. Essentially, members with very poor fitness die out very early causing
premature convergence. To overcome these problems, few other selection techniques are
available. The most used of all of these techniques are ranking and tournament selections.

Fill a pot with all the members of
the population

P ick
X 1 and X 2

randomly

F(X 1) < F(X 2)

P ick X1

P ick X2

Yes

No

M
A
T
E

P ick
X 3 and X 4

randomly

F(X 3) < F(X 4)

P ick X3

P ick X4

Yes

No

N e w P o p u lation

Empty ?

F() is Fitness
function

F() is Fitness
function

In the tournament selection strategy, the strings are grouped randomly and adjacent pairs are
made to compete for the selection process. There are two options here. In binary, pairs of
individuals are picked at random from the population. The one with higher fitness is copied
into the mating pool. Larger tournaments are employed by picking n individuals instead of
two (a pair). This increases the selection pressure. In probabilistic binary, the better
individual wins the tournament with probability 0.5 < p < 1. Tournament size and win
probability controls selection pressure. The fitter member in the pool gets selected for
mating. (Care should be taken to avoid two copies of the same string mating for the next
generation). There are several advantages in using the tournament selection. These are:

1) Deterministic, works well and shown to be superior to roulette wheel.

2) Tournament size can vary.

3) Can handle maximization or minimization problems.

4) Can be easily extended to multiple criteria problems.

 FlexGA User’s Guide3-30

3. FlexGA Tutorial on Software Usage

Step 1: Define objective function

The first step in using the software is to develop an objective function that
looks like

PI=flperf(p)
 code
PI=....

where PI is the performance index (fitness)
returned by the function.

An Example is shown on the right.

Step 2: Define function and GA parameters

Once an objective function is written, the following vectors that describe the
problem to be optimized have to be created.

(Noofp = Number of parameters).

P_type(1:Noofp) = A vector that describes the type of parameter used.

The options are:
1 = Integer type.
2 = Real type that takes discrete values.
> 2 is a Real type that takes continuous values (this number also defines
the number of bits that are used to represent each parameter using
stochastic GA (see Section 2.6).

P_min(1:Noofp) = A vector of minimum values for the parameter vector.
• If P_type (i) <= 2, P_min(i) represents the minimum value for P(i).
• If P_type (i) > 2, P_min(i) represents an approximate value for the

minimum of P(i).

P_max(1:Noofp) = A vector of maximum values for the parameter vector.
• If P_type (i) <= 2, P_max(i) represents the maximum value for P(i).
• If P_type(i) > 2, P_max(i) represents an approximate value for the

maximum of P(i).

 P_res(1:Noofp) = A vector of resolution values for the parameter vector.
• If P_type (i) <= 2, P_res(i) represents the resolution value for P(i).

File Name: ex1.m

function PI=ex1(x)

npx(1)=size(x,1);
npx(2)=size(x,2);
np=max(npx);

PI=0.0;
for i=1:np
 PI=PI+(x(i)-0)*(x(i)-0);
end

FlexGA Users Guide 3-31

• If P_type(i) > 2, P_res(i) is ignored.

gap(1) = Type of GA
• 1= Regular GA
• 2= Micro-GA
• 3=Steady State GA

gap(2) = # of generations for evolution
gap(3) = population size
gap(4) = No of peaks;
gap(5) = Type of selection desired

• 1= Roulette Wheel Selection
• 2= Tournament Selection
• 3= Ranking Selection

gap(6) = Tournament size (> 1 if Tournament selection is chosen).
gap(7) = Steady State population size (>1 if Steady State GA is chosen)
gap(8) = Probability of Crossover (0 - 1)
gap(9) = Number of crossover points (> 1)
gap(10) = Probability of Mutation (0 - 1)
gap(11) = Probability of Gaussian Mutation (0 - 1) [OPTIONAL]
gap(12) = Micro-GA inner loop # of Generations [OPTIONAL]
gap(13) = # of asexual children for stochastic coding [OPTIONAL]

G_disp = Gap Display options [OPTIONAL]
• = 0 (show no plots, no display)
• = 1 (Default, show plots of evolution)
• = 2 (show only Generation count)
• = 3 (show data on screen and no plots. Data includes Generation #,

Max, Min, Avg Values)

Several default gap vectors can be created using fmga_def.

The command is as follows: gap=fmga_def(gap_choice)

where,

gap_choice
• =1; Small problem; 10 parameters or less; Regular GA
• =2; Medium problem; 30 parameters or less; Regular GA
• =3; Small problem; 10 parameters or less; Micro GA
• =4; Medium problem; 30 parameters or less; Micro GA
• =5; Small problem; 10 parameters or less; Steady-state GA
• =6; Medium problem; 30 parameters or less; Steady-state GA
• =7; Big problem; 30 parameters or more; Steady-state GA

 FlexGA User’s Guide3-32

Step 3: Write main GA code using the template given below.

Step 4: Execute GA software

Once the main GA code is created, the GA software can be executed at the
Matlab command prompt as follows (assuming gaex1.m is the file name):

gaex1

%#call ex1 %A necessary statement for declaring the file
%name where the objective function resides.

fname='ex1'; %Objective function is programmed in ex1.m

%Next lines describe the required inputs to GA.
size=3; % # of parameters in the objective function that need

 % to be optimized

P_min = -3*ones(size,1);
%Minimum for the parameters (a column vector)

P_max = 3*ones(size,1);
%Maximum for the parameters (a column vector)

P_res = 0.01*ones(size,1);
%Resolution for the parameters (a column vector)

P_type = 2*ones(size,1); %Type is real discrete
%Type of the parameter (a column vector)

% The next line is used to generate default values for flexga
software

gap=fmga_def(1);

G_disp=1; %Display option

%..
% The program returns
% Jmax(1:Ngen)= A vector of max performance index values
% Jmin(1:Ngen)= A vector of min performance index values
% Javg(1:Ngen)= A vector of average PI values
% bestP(1:Noofpeaks,1:Noofp) = A matrix of best Parameters
% PI(1:popsize)= A vector of fitness functions for the last
% generation
% where
% Ngen = # of generations
% Noofp = # of parameters
% Noofpeaks = # of desired sub-optimal solutions
% popsize = population Size
%..

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_re
s,P_type,gap,G_disp);

FlexGA Users Guide 3-33

3.1. Example 1: A Simple Function

We will use a simple function (ex1.m) to illustrate the ease of using FlexGA.
The function is defined as

The function is coded in ex1.m.

The user needs to define:

P_max = [3 3 3]
P_min = [-3 -3 -3]
P_res = [0.01 0.01 0.01]
P_type = [2 2 2]

All three parameters are real types with discrete possibilities separated by 0.01.

Next the gap vector needs to be defined. The Table below gives the values
used here.

Gap vector Values Description
gap(1) 1 Type of GA (1= Regular GA)
gap(2) 30 # of generations for evolution
gap(3) 31 population size
gap(4) 1 No of peaks;
gap(5) 2 Type of selection desired (2= Tournament Selection)
gap(6) 2 Tournament size (> 1 if Tournament selection is

chosen).
gap(7) 1 Steady State population size (>1 if Steady State GA

is chosen)
gap(8) 0.77 Probability of Crossover (0 - 1)
gap(9) 2 Number of crossover points (> 1)
gap(10) 0.0077 Probability of Mutation (0 - 1)

Execute GA using the gaex1.m (shown below).

min f(x)=x(1)*x(1)+x(2)*x(2)+x(3)*x(3)

 FlexGA User’s Guide3-34

FlexGA will evolve and show a plot of evolution. An example is shown below.
Once the evolution is complete, the following variables can be viewed in the
workspace.

%gaex1.m % Main program

%#call ex1
fname='ex1';
size=3;
P_min = -3*ones(size,1);
P_max = 3*ones(size,1);
P_res = 0.01*ones(size,1);
P_type = 2*ones(size,1); %Type is real discrete
gap=fmga_def(1);
G_disp=1;

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_res,
P_type,gap,G_disp);

max_PI, min_PI, avg_PI, bestP, PI

FlexGA Users Guide 3-35

3.2. Example 2: A Difficult Function.

This function has many optima. For a given dimension d, the total number of
local minima for (3< x < 13) is 2d.

The function is coded in ex2.m.

Please note that a maximization objective can be achieved by minimizing
a negated function (as shown below).

3.3. Example 3: Multiple Peaks

The next function used is the Himmelblau function with four equal peaks
located at [3,-2], [-3,-2], [3,2], and [-3,2]. This function is defined as:

%gaex2.m % Main program

%#call ex2
fname='ex2';
P_min = [3 3 3 3 3 3 3 3 3 3]';
P_max = [13 13 13 13 13 13 13 13 13 13]';
P_type = [2 2 2 2 2 2 2 2 2 2]';
P_res = P_min*0.01;
gap=fmga_def(6); %Bigger problem
G_disp=1;

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_res,
P_type,gap,G_disp);

22
21

2
2

2
121)7()11(),(min −++−+= xxxxxxf

))
3

2
sin()(sin()(max

1
∑

=

+=
d

i
ii xxxf

))
3

2
sin()(sin()(min

1
∑

=

+−=
d

i
ii xxxf

 FlexGA User’s Guide3-36

We will execute FlexGA with Niching option. this option is automatically
invoked when the number of peaks is defined to be greater than 1 (gap(4)
defines the number of peaks as shown below).

The function is coded in ex3.m.

Note: When the number of peaks > 1, bestP shows all of the solutions of the
last generation sorted in best to worst order.

3.4. Example 4: Non-convex optimization

The function used is presented to the right:

The function is coded in ex4.m.

%gaex3.m % Main program

%#call ex3
fname='ex3';
P_min = [-10 -10]';
P_max = [10 10]';
P_res = [0.01 0.01]';
P_type = [2 2]';
gap=fmga_def(1);
gap(4)=2; % number of desired optimal solutions = 2;
G_disp=1;

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_res,
P_type,gap,G_disp);

%gaex4.m % Main program

%#call ex4
fname='ex4';
size=10;
P_min = -3*ones(size,1);
P_max = 3*ones(size,1);
P_res = 0.01*ones(size,1);
P_type = 3*ones(size,1); %real and continuous with 3 bits to

 %represent the region
gap=fmga_def(5);
gap(4)=2; % number of desired optimal solutions = 2;
G_disp=3;

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_res,
P_type,gap,G_disp);

∑
=

=
10

1

4)(min
i

ixxf

FlexGA Users Guide 3-37

3.5. Example 5: Control Optimization

One of the most used products of the modern control theory is the theory of the Linear
Quadratic Regulator. In this section an example problem presented by Bryson and Ho
[Brys65], a lateral autopilot design, is optimized using the GA (This example was chosen to
show the inner workings of a GA and not to suggest GA as an alternative to classical LQR
design). Specifically, the GA designs lateral feedback gains based on a quadratic
performance index to maintain heading and roll attitude. The perturbation equations of
lateral motion are given by a fifth-order system:

&X AX BU= +

X = [ß r p Φ Ψ]T; U = [δr δa]
T;

where ß = sideslip angle, Ψ = yaw angle,
r = yaw rate, Φ = roll angle,
p = roll rate,
δr = rudder deflection,
δa = aileron deflection.

The all state feedback system and the Quadratic Performance Index are defined, respectively,
as

δ
δ

β

φ
ϕ

r

a

K K K K K

K K K K K

r

p

 = −

11 12 13 14 15

21 22 23 24 25

Minimize: J[u] =
lim

t → ∞
1/2

0

t

∫ [δa
2 + δr

2 + (ß+Ψ)2 + Φ2] dt

To solve this problem, each gain in the gain set [Kij], can be represented as a seven-bit
string. The strings then are concatenated by the software to produce a 70-bit string, each
string representing one feedback design. As an example, a probable 70-bit string, with
spaces added for emphasis, is shown below:

0100101 0110100 1010110 0101011 1011101 1100101 1011100 1100110 1101110 1011000
 K11 K12 K13 K14 K15 K21 K22 K23 K24 K25

This string represents one possible solution out of 270 solutions. In the above representation
0000000 represents a predetermined minimum value for the gains and 1111111 represents a
predetermined maximum value for the gains. Note here that the mapping of the gain set on
to the 7-bit string can be different for different gains depending on the desired range and
resolution of the gain values.

The fitness function for the GA implementation is defined as

 FlexGA User’s Guide3-38

Minimize: F(Kij) = ∑
=

3

1i

1/2
t

t

=

=

∑
0

60

[δa
2 + δr

2 + (ß+Ψ)2 + Φ2] dt

where l = 1 to3 represents three random initial condition responses of the lateral system.
Three initial conditions are chosen to ensure excitation of all lateral modes. For this
problem, Kmin and Kmax are set at -1 and 1 respectively, and the resolution is chosen to be at
least 0.01

The function is coded in ex5.m.

%gaex5.m % Main program

%#call ex5
fname='ex5';
P_min = -1*ones(10,1);
P_max = ones(10,1);
P_res = 0.01*ones(10,1);
P_type = 3*ones(10,1) %real and continuous with 3 bits to

 %represent the region
gap=fmga_def(5);
G_disp=1;

[max_PI,min_PI,avg_PI,bestP,PI]=flexga(fname,P_min,P_max,P_res,
P_type,gap,G_disp);

FlexGA Users Guide 4-39

4. Bibliography
[Adel94] Adeli, H., and Cheng, N. (1994), Augmented Lagrangian genetic
algorithm for structural optimization, Journal of Aerospace Engineering, 7(1), 104-118.

[Adel94] Adeli, H., and Cheng, N. (1994), Concurrent genetic algorithms for
optimization of large structures, Journal of Aerospace Engineering, 7(3), 276-296.

[Adle94] Adleman, H. E. (1994), Molecular Computation of Solutions to
Combinatorial Problems, Science, vol. 266, no. 11, 1021-1024.

[Alli93] Alliot, J., Gruber, H., Joly, G., and Schoenauer, M. (1993), Genetic Algorithms for
Solving Air Traffic Control Conflicts, in Proceedings of the 9th International Conference on
Artificial Intelligence for Applications, 338-344.

[Axel93] Axelsson, J., Menth, S., and Semmler, K.. (1993), Genetic Algorithms in
Industrial Design, in IEEE Proceedings of the International Conference on Tools with
Artificial Intelligence, 64-67.

[Back97] Bäck, T. (1997), Evolutionary Algorithms in Theory and Practice, Oxford
University Press.

[Back96] Bäck, T. (1996), Handbook of Evolutionary Computation, Oxford University Press.

[Box57] Box, G. E. P. (1957), Evolutionary Operation: A Method for Increasing Industrial
Productivity, Applied Statistics, vol. 6, 81-101.

[Bram89] Bramlette, M., and Cusic, R. (1989), A Comparative Evaluation of Search
Methods Applied to Parametric Design of Aircraft, Lockheed Aeronautical Systems Co.,
Proceedings of the 3rd International Conference on Genetic Algorithms, 213-218.

[Brys65]Bryson, A. E., and Ho, Y. (1965), Applied Optimal Control. Hemisphere Publishing
Corporation, New York.

[Conl81] Conley, W. (1981), Optimization: A Simplified Approach, Petrocelli Books, Inc.

[Cord95] Cordon, O., and Herrera, F. (1995), A General Study on Genetic Fuzzy Systems,
in: J. Periaux and G. Winter, Ed., Genetic Algorithms in Engineering and Computer
Science, John Wiley & Sons, Ltd, England.

[Davi91] Davis, L. (1991), Handbook of Genetic Algorithms, NY: Van Nostrand
Reinhold.

[Dela94] Delahaye, D., Alliot, J. M., Schoenoauer, M., and Farges, J. L.. (1994),
Genetic algorithms for partitioning air space, in Proceedings of the Conference on Artificial
Intelligence Applications, 291-297.

[Flex95] FlexTool(EFM) M2.1: Evolutionary Fuzzy Modeling Tool for MATLAB (software
and manual), Flexible Intelligence Group, L.L.C., Tuscaloosa.

 FlexGA User’s Guide4-40

[Foge62] Fogel, L. J. (1962), Autonomous Automata, Industrial Research, vol. 4, 14-19.

[Foge95] Fogel, D. B. (1995), Evolutionary Computation, IEEE Press .

[Frie58] Friedberg, R. M. (1958), A Learning Machine: Part I, IBM J. of Research and
Development, vol.2, 2-13.

[Giff94] Gifford, D. K. (1994), On the Path to Computation with DNA, Science, vol. 266,
no. 11, 993-994.

[Gold89] Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison- Wesley, .

[Gold94] Golddberg, D. E. (1994), “Genetic and Evolutionary Algorithms come of Age,”
Comm. ACM, vol. 37, no. 3.

[Haft90] Haftka, R. T., Gurdal, Z., and Karmat, M. P. (1990), Elements of Structural
Optimization, Kluwer Academic Publishers.

[Haje90]Hajela, P. (1990), Genetic Search - an approach to the non convex optimization
problem, AIAA Journal, vol. 28, no. 7, 1205-1210.

[Holl75] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor.

[Homa94] Homaifer, A., Lai, H. Y., and McCormick, E. (1994), System optimization
of turbofan engines using genetic algorithms, Applied Mathematical Modeling, vol. 18, no.
2, 72-83.

[Juri94] Juric, M. (1994), Optimizing Genetic Algorithm Parameters for Multiple Fault
Diagnosis Applications, in IEEE Proceedings of the 10th International Conference on AI for
Applications, 434-440.

[Kauf93] Kauffman, S. A. (1993), The Origin of Order, Oxford University Press, New York.

[Kirb94]Kirby, G., Matic, P., and Lindner, D. K. (1994), Optimal actuator size and location
using genetic algorithms for multi variable control, in Adaptive Structures and Composite
Materials: Analysis and Application, vol. 45, 325-335.

[Koza92] Koza, J. K. (1992), Genetic Programming, MIT Press, 1992.

[Kris89] Krishnakumar, K. (1989), Micro-Genetic Algorithms for Stationary and Non-
stationary Function Optimization, Proceedings of the SPIE's Intelligent Control and
Adaptive Systems Conference, 289-296.

[Kris92] Krishnakumar, K., and Goldberg, D. E. (1992), Control system optimization using
genetic algorithms, Journal of Guidance, Control, and Dynamics, vol. 15, no. 3, 737-740.

[Kris94a] Krishnakumar, K., Swaminathan, R., and Montgomery, L. (1994), Multiple
optimal solutions for structural control sing genetic algorithms with niching, Journal of
Guidance,Control, and Dynamics, vol. 17, no. 6, 1374-1377.

[Kris94b] Krishnakumar, K., Swaminathan, R., and Garg, S. (1995), Solving Large
Parameter Optimization Problems Using a Genetic Algorithm with Stochastic Coding, in: J.
Periaux and G. Winter, Ed., Genetic Algorithms in Engineering and Computer Science, John
Wiley & Sons, Ltd.

[Kris95] Krishnakumar, K., and Satyadas, A. (1995), Evolving Multiple Fuzzy Models and
its application to an aircraft control problem, in: J. Periaux and G. Winter, Ed., Genetic
Algorithms in Engineering and Computer Science, John Wiley & Sons, Ltd, .

FlexGA Users Guide 4-41

[Kris95] Krishnakumar, K., Gonsalves, P., Satyadas, A., and Zacharias, G. (1995), Hybrid
fuzzy logic controller synthesis via pilot modeling, AIAA Journal of Guidance, Control, and
Dynamics, vol. 18, no. 5, 1098-1105.

[Leri93] Leriche, R., and Haftka, R. T. (1993), Optimization of laminate stacking sequence
for buckling load maximization by genetic algorithm, AIAA Journal, vol. 31, no. 5, 951-956.

[Mich92] Michalewicz, Z. (1992), Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, .

[Mich95] Michalewicz, Z., and Michalewicz, M. (1995), Pro-life Versus Pro-choice
Strategies in Evolutionary Computation Techniques, Computational Intelligence, A Dynamic
System Perspective, IEEE Press, .

[Mitc96] Mitchell, M. (1996), Introduction to Genetic Algorithms, MIT Press, .

[Noto95] Noton, M. (1995), Orbital strategies around a comet by means of a genetic
algorithm, Journal of Guidance, Control, and Dynamics, vol. 18, no. 5, 1217-1220.

[Pell94] Pellazar, M. (1994), Vehicle route planning with constraints using genetic
algorithms, in IEEE Proceedings of the National Aerospace and Electronics Conference,
vol. 1, 111-118.

[Quag95] Quagliarella, D., and Cioppa, A. (1995), Genetic algorithms applied to the
aerodynamic design of transonic airfoils, Journal of Aircraft, vol. 32, no. 4, 889-891.

[Rao93] Rao, S. S. (1993), Genetic algorithmic approach for multi objective optimization of
structures, in Structures and controls optimization, vol. 38, 29-38.

[Rech65] Rechenberg, I. (1965), Cybernetic Solution Path of an experimental problem,
Royal Aircraft Establishment, Library Translation No. 1122.

[Russ90] Russell, P. J. (1990), Genetics, Harper Collins Publishers, .

[Samu97] Samuelson, L. (1997), Evolutionary Games and Equilibrium Selection, MIT Press.

[Saty95] Satyadas, A., and Krishnakumar, K. (1995), Evolving Lean Fuzzy Controllers using
Evolutionary Fuzzy Modeling, Proc. of VIth International Fuzzy Systems Association (IFSA)
World Congress, I, Sao Paulo, Brazil, 253-256.

[Schw95] Schwefel, H. (1995), Evolution and Optimum Seeking, Wiley Inter-Science.

[Scot93] K. A. Scott, Five ways to a smart Genetic Algorithms, AI Expert.

[Seyw95] Seywald, H., Kumar, R. R., and Deshpande, S. M. (1995), Genetic algorithm
approach for optimal control problems with linearly appearing controls, Journal of
Guidance, Control, and Dynamics, vol. 18, no. 1, 177-182.

[Tucc95] Tuccillo, R., and Senatore, A. (1995), A Genetic Algorithm Based Approach to
Radial Flow Impeller Design, Computational Fluid Dynamics in Aeropropulsion ASME,
vol. 49, 51-62.

[Twar94] Twardowski, K. (1994), “An Associative Architecture for Genetic Algorithm-
Based Machine Learning,” IEEE Computer, 27-38.

[Zuo95] Zuo, W. (1995), Multi variable adaptive control for a space station using genetic
algorithms, IEE Proceedings: Control Theory and Applications, vol. 142, no. 2, 81-87.

 FlexGA User’s Guide4-42

FLEXIBLE INTELLIGENCE GROUP, L.L.C. SOFTWARE LICENSE
AGREEMENT

READ THE TERMS AND CONDITIONS OF THIS LICENSE CAREFULLY BEFORE OPENING THIS
PACKAGE. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (the
"Licensee" - either an individual or an entity) AND FLEXIBLE INTELLIGENCE GROUP, L.L.C. (“FIG”)
CONCERNING THE COMPUTER SOFTWARE CONTAINED HEREIN (“FlexGA”) THE ACCOMPANYING
USER DOCUMENTATION.

BY OPENING THIS PACKAGE, YOU ACCEPT THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT
WILLING TO DO SO RETURN THE UNOPENED PACKAGE IMMEDIATELY FOR A REFUND. YOU MAY
ALSO RECEIVE A FULL REFUND IF TERM OF AGREEMENT.

LICENSE GRANT: FIG hereby grants to Licensee a nonexclusive license to install and use the FlexGA and
documentation as provided herein.

INSTALLATION AND USE: This license permits Licensee to install and use one copy of the FlexGA on a single
computer. “Use” means that a copy is loaded into temporary memory or installed into the permanent memory of a
computer, except that a copy installed on a network server for the sole purpose of distribution to other computers is not in
“use”. Licensee is responsible for limiting the number of possible concurrent users to the number licensed. Each copy of
the FlexGA may be used on a backup computer (if the original is not functional) or a replacement computer. The
documentation provided with the FlexGA may not be copied.
Licensee shall use the FlexGA only for its internal operations. “Internal operations” shall include use of the FlexGA by
Licensee’s own employees or those of its subsidiaries or parent company, and in the performance of consulting or research
for third parties who engage Licensee as an employee or independent contractor. Licensee may allow use of the FlexGA
by employees, consultants, students and/or (in the case of individual licensees) colleagues, but Licensee may not make the
FlexGA available for use by third parties generally on a “time sharing” basis.
Licensee may make copies of the FlexGA only for backup or archival purposes. All copies of the FlexGA and
Documentation shall contain all copyright and proprietary notices in the originals.
FlexGA licensed to degree-granting educational institutions are further restricted to use in connection with on-campus
computing facilities that are used solely in support of classroom instruction and research activities of students and faculty.
FIG excludes the right for the Licensee to use the FlexGA for commercial purposes.
Licensee shall take appropriate action by agreement, instruction, or otherwise with all persons permitted access to the
FlexGA, to enable Licensee to satisfy this Agreement obligations.

TERMS OF AGREEMENT: This Agreement shall continue until terminated by FIG or Licensee as provided below.

TERMINATION: FIG may terminate this license by written notice to Licensee if Licensee (a) breaches any material
term of this Agreement, (b) ceases conducting business in the normal course, becomes insolvent or bankrupt, or avails
itself of or becomes subject to any proceedings pertaining to insolvency or protection of creditors. Licensee may terminate
this Agreement at any time by written notice to FIG. Licensee shall not be entitled to any refund if this Agreement is
terminated. Upon termination, Licensee shall promptly return all copies of the FlexGA and Documentation in Licensee’s
possession or control, or promptly provide written certification of their destruction.

LIMITED WARRANTY: FIG warrants that FlexGA will conform in all material respects to the description of its
operation in the Documentation for a period of 30 days from delivery. In the event that FlexGA does not materially
operate as warranted, Licensee’s exclusive remedy and FIG’s sole liability under this warranty shall be (a) FIG shall
correct or work around major defects within a reasonable time, or (b) should such correction or work around prove
neither satisfactory or practical, termination of the License and refund of the license fee paid to FIG for the FlexGA. THE
FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. FIG SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES, INCLUDING WITHOUT LIMITATION LOST PROFITS. Licensee accepts responsibility for its use of
the FlexGA and the results obtained therefrom.

LIMITATION OF LIABILITY: FIG SHALL NOT BE LIABLE TO LICENSEE FOR MORE THAN THE
AMOUNT PAID BY LICENSEE TO FIG FOR THE FlexGA WITH RESPECT TO WHICH THE LIABILITY IN
QUESTION ARISES, AS INSTALLED ON THE SINGLE DESIGNATED COMPUTER FOR WHICH USE OF THE
PROGRAM IS LICENSED HEREUNDER.

GENERAL PROVISIONS: Licensee may not assign this License without written consent of FIG, except to a parent or
subsidiary company of Licensee. Should an act of Licensee purport to create claim, lien, or encumbrance on any FlexGA,
such claim, lien, or encumbrance shall be void. All provisions regarding liability, warranty, and limits thereon, and
protection of proprietary rights, shall survive termination of this Agreement, as shall all provisions regarding payment of
amounts due at the time of termination. This Agreement shall be governed by the internal laws of Alabama. Should
Licensee install the FlexGA outside the United States, Licensee shall comply fully with all applicable laws and
regulations relating to export of technical data. This Agreement contains the entire understanding of the parties and may
be modified only by written instrument signed by both parties.

